LCD-Fernseher

3.4086393088317 (2315)
Geschrieben von bishop 02/03/2009 @ 20:11

Tags : lcd-fernseher, digital entertainment, high-tech

Neueste Nachrichten
Wie gut ist der Aldi MEDION LIFE E12000 LCD Fernseher? - LCD TV Fernseher
Juni 2009 einen 40 Zoll LCD Fernseher mit eingebautem DVD-Player. Eine Kombi, die zu diesem Preis wirklich fair ist. LCD TV Fernseher sagt, wie gut der MEDION LIFE E12000 LCD Fernseher ist. Von der Ausstattung her ist der Aldi MEDION LIFE E12000 LCD...
Metz: 42-Zoll-LCD-Fernseher mit Hybrid-Tuner - Chip Online
Die deutsche Firma Metz präsentiert den LCD-Fernseher Axio 42 FHD CT mit hybridem digitalem Tuner und einer Bildschirmdiagonale von 42 Zoll (107 Zentimetern). Ein DVB-T- und DVB-Tuner sind laut Metz bereits integriert, HD-fähige Varianten sollen sich...
Panasonic LCD-Fernseher mit Festplatten-Recorder - Bluray-disc.de
Dabei handelt es sich um zwei Full-HD LCD-Fernseher mit den Größen 32 und 37 Zoll (siehe Abbildung rechts), sowie zwei HD-ready PC-Monitore mit 17 und 20 Zoll (siehe Abbildung links unten), welche sich auch als Zweit-Fernseher gut machen....
Weltpremiere in Japan: LCD-Fernseher mit integriertem Blu-ray Recorder - Bluray-disc.de
Nachdem Sharp als erster Hersteller Fernseher mit integrierten Blu-ray Playern auf den Markt brachte (klick), stellte man nun einen LCD-TV vor, welcher einen Blu-ray Recorder besitzt. Damit sind sie ebenfalls die ersten, die eine solche...
Dünnster LCD-Fernseher der Welt vorgestellt - Elektronikpraxis
LG Display hat zwei große TV-LCD-Panels vorgestellt, die nach Angaben des Unternehmens weniger als 6 mm dick sind. Die Full-HD-Panels sind außerdem sehr leicht und sollen eine sehr gute Bilddarstellung gewährleisten. Wann sie auf den Markt kommen,...
Dünnster LCD-Fernseher der Welt vorgestellt - Digital Production
Der koreanische Display-Hersteller LG Display hat die laut Unternehmen dünnsten LCD-TV-Panels mit 42 und 47 Zoll Bilddiagonalen vorgestellt. Trotz dieser beachtlichen Abmessung sind die Panels LG Display zufolge lediglich 5,9 Millimeter dick....
JVC LT-42WX70: LCD-Fernseher verspricht perfekte Fotodarstellung - Flimmerkisten
Mit dem neuen LCD-Fernseher LT-42WX70 richtet sich JVC an eine ungewöhnliche Zielgruppe: An Fotografen mit Spiegelreflexkamera. Die sollen nämlich von dem großen Farbraum, brillanter Darstellungsqualität und sehr vielen Einstellungsmöglichkeiten...
Xoro: Neue LCD-Fernseher mit HDMI, ATV, DVB-T, DVD-Player, USB und ... - DigitalVD
Die Xoro Erfolgsgeschichte setzt sich mit den neuen LCD-Fernseher HTC 1926D und HTC 2226D fort. Die 48 cm 55 cm großen Fernseher passen ins jedes Büro, Küche, Kinder-, Jugend- oder Schlafzimmer und bieten trotzdem die Xoro-typische Abspiel- und...
Kauftipps für Flatscreens: Beliebt sind LCD-Fernseher - eVendi.de
Sowohl Plasma- als auch LCD-Fernseher haben ihre typischen Vor- und Nachteile. Der Nutzer sollte vor dem Kauf seine Bedürfnisse und Anforderungen genau analysieren und mit den Technologien abgleichen. Für einen LCD-Fernseher sprechen Faktoren wie hohe...
Toshiba Regza ZV635: Neue LCD-Fernseher mit Köpfchen - Flimmerkisten
Toshibas LCD-Fernseher Regza ZV635 in drei Größen besitzt eine ganze Reihe von Funktionen, die ihn von der Konkurrenz abheben sollen. Vor allem kennzeichnen sie die Regza ZV635-Fernseher als anspruchsvolle Modelle, die auch auf großen Bildschirmen aus...

High Definition Television

Plakette des Greater London Council mit Hinweis zum BBC "High Definition" Regelbetrieb 2. November 1936

High Definition Television (HDTV, engl. für hochauflösendes Fernsehen) ist ein Sammelbegriff, der eine Reihe von Fernsehnormen bezeichnet, die sich gegenüber dem herkömmlichem Fernsehen (Standard Definition, SDTV) durch eine erhöhte vertikale, horizontale oder temporale Auflösung auszeichnen.

Zu verschiedenen Zeiten verstand man aufgrund des jeweiligen Standes der Technik andere Auflösungen als hochauflösend. Aktuell sind Vertikalauflösungen von 720 (Vollbilder) und 1080 Zeilen (Halbbilder) gebräuchlich. Die bisherigen Fernsehstandards PAL und SECAM bieten zum Vergleich 576 Zeilen (50 Hz), NTSC 480 (60 Hz), jeweils im Zeilensprungverfahren.

Im November 1936, zum Sendestart des vollelektronischen BBC Television Service, wurde erstmals das schwarz-weiße 405-Zeilen-System von Marconi/EMI als "hochauflösend" bezeichnet, um es von den anderen damaligen Versuchen mit anfangs nur 30 (ab 1928), später 120 Zeilen von John Logie Baird (ebenfalls Großbritannien) und 180 Zeilen (in Deutschland verwendet durch den Fernsehsender Paul Nipkow) abzugrenzen. Die Ausstrahlung erfolgte vom Südost-Turm des Alexandra Palace (Wood Green, London). Eine Tafel erinnert dort an dieses Ereignis.

Schon bei der Festlegung der normalauflösenden Fernsehnormen der Welt Ende der 1940er Jahre musste man sich bei der Festlegung der Zeilenanzahl und Videobandbreite gegenüber dem Wünschenswerten deutlich einschränken. Praktisch standen zur Übertragung von Fernsehen 80 bis 90 MHz Hochfrequenzbandbreite (HF) zur Verfügung. Beherrschbare und bezahlbare Hochfrequenztechnik endete bei 200 bis 300 MHz. Es dauerte rund 25 Jahre, bis Aufnahme- und Wiedergabetechnik die Formate mit 405 (Großbritannien) bis 819 Zeilen (Frankreich) ansatzweise ausreizten. Die Bildwiederholrate war zur Vermeidung von Flimmern bei Kunstlicht an die Netzfrequenz angepasst und betrug dementsprechend 50 Hz (Europa, Afrika, Asien, Australien) oder 60 Hz (Amerika, Japan, Südkorea), jeweils im Zwischenzeilenverfahren (Interlace) mit 25/ 30 Vollbildern.

Die ersten öffentlichen Farb-TV-Sendungen wurden 1953 in den USA im NTSC-System (525 Zeilen, davon maximal 486 sichtbar) ausgestrahlt, Europa folgte ab 1966 mit dem französischen SECAM und dem von Walter Bruch entwickelten PAL-System (625 Zeilen). Bruch (bei Telefunken) hat übrigens auch die Grundlagen für das MAC-System erfunden (1973 als "Trisec" vorgestellt), das später in Europa zu D2-MAC (625 Zeilen) und HD-MAC (1250 Zeilen) weiterentwickelt wurde. Unabhängig von dem Problem der verschiedenen Normen (NTSC, PAL, SECAM) fanden die ersten Versuche zu HDTV Ende der 1970er bis Anfang der 1980er Jahre statt. Treibende Kräfte waren das IEEE und die SMPTE.

Aus ihren Untersuchungen im Zeitraum 1978 bis 1982 ergaben sich folgende Ziele für ein hochauflösendes Fernsehen: Die Zeilenzahl sollte auf 1125 bis 1500 (Farbe) bzw. 2125 (Schwarz-Weiß) erhöht werden, um die Zeilenstruktur nicht mehr wahrnehmbar zu machen und ein schärferes Bild mit mehr Details zeigen zu können. Das Bildseitenverhältnis sollte von 4:3 auf 5:3 bis 6:3 gestreckt werden, um sich dem menschlichen Gesichtsfeld und der Kinoprojektion anzunähern. Zur Reduzierung des Flimmerns größerer heller Flächen und horizontaler Linien sollte die Halbbildfrequenz mindestens auf 60 Hz erhöht werden und, sobald technisch möglich, durch mehrfaches Auslesen und Anzeigen digitaler Bildspeicher weiter verbessert werden. Durch Erhöhung der Videobandbreite für das Helligkeitssignal auf 20 bis 50 MHz sollte die Bildschärfe verbessert werden. Die getrennte Übertragung von Farbart und Helligkeitssignal mit Bandbreiten zwischen 5,5 und 12,5 MHz würde Cross-Luminance-Störungen (Übersprechen von Farbinformation in die Helligkeitsübertragung) verhindern. Wie schon die Stereo-Audiosignale sollte zukünftig auch Video per Frequenz- statt Amplitudenmodulation übertragen werden, was Rauschen und Geisterbilder sowie andere auftretende Störungen verringern sollte. Da dies ohne die erst später verfügbar gewordene Video-Irrelevanzkodierung jedoch utopisch hohe notwendige HF-Bandbreite bedeuten würde, kämen als Übertragungsverfahren nur Satellit und Glasfaser in Betracht, wobei 60 Standard- und 30 HDTV-Sender angestrebt wurden. Wegen der hohen Kosten, die HDTV damals mit sich gebracht hätte, und der ungewissen technischen Entwicklung im Digitalbereich wurde die Einführung auf unbestimmte Zeit verschoben.

In der Bundesrepublik startete Professor Broder Wendland 1979 erste Forschungen zum HDTV am Institut für Nachrichtentechnik der Universität Dortmund. Professor Wendland erarbeitete technische Grundlagen für ein eigenständiges HDTV-System, die ihrerseits wiederum der Ausgangspunkt für den europäischen, sogenannten „EUREKA-Standard“ als HDTV-Normvorschlag aus Europa bildeten. Auch das Heinrich-Hertz-Institut begann zu Anfang der 1980er Jahre mit seinen Forschungen zur „hochauflösenden Darstellung farbiger Bewegtbilder“ und anderer Fragen von HDTV. Ab 1986 wurde dann die Forschung europaweit im Rahmen der Forschungsinitiative EUREKA koordiniert und gebündelt. In den USA begann das Interesse an HDTV im Jahre 1982, als die National Association of Broadcasters (NAB) ein Advanced Television Systems Committee (ATSC) in Washington gründete. Seitdem gab es in den USA verschiedene Forschungen und Entwicklungen im Bereich von Fernsehsystemen, nicht alleine nur bei HDTV, sondern auch bei Zwischenformen.

Ende der 80er Jahre kam HDTV in Europa wieder in die Diskussion. Bei diesem Vorstoß konzentrierte man sich im Gegensatz zu den Machbarkeitsstudien zehn Jahre zuvor mehr auf einen gangbaren Aufrüstungspfad und entwickelte das MAC-Verfahren (Multiplexed Analogue Components). HD-MAC sollte die zweite Stufe einer Verbesserung sein, deren erste Stufe das für Satellitenübertragung entwickelte D- bzw. D2-MAC war, das sich allerdings aus verschiedenen Gründen bei Endanwendern (mit Ausnahme skandinavischen Bezahlfernsehens) nicht durchsetzen konnte.

HD-MAC ist ein sehr komplexes analog/digitales Hybridsignal, erzeugt mit einem modifizierten D2-MAC-Encoder. Es überträgt 1250 Zeilen/Bild und 50 Halbbilder/s im 16:9-Format und konnte mit einem 625-Zeilen-D2-MAC-Empfänger in Normalauflösung dekodiert werden, wobei im Gegensatz zu früheren Analogverfahren alle Zeilen für das Bild genutzt werden konnten. Die Olympischen Spiele 1992 in Barcelona wurden teilweise in dieser Norm übertragen und europaweit mit ca. hundert HD-MAC-Empfangsgeräten (zum Teil große Rückprojektionsgeräte) an ausgewählten Standorten vorgeführt. Die Produktion von hochwertigen Videofilmen in HDTV-Qualität und 16:9 wurde noch jahrelang durch die EU finanziell gefördert; deren vierfache Auflösung macht sich bei hochqualitativer PALplus- oder Digital-Aussendung auch auf guten PAL(plus)- bzw. Digital-Empfängern noch bemerkbar.

In Japan fanden Voruntersuchungen zu HDTV seit 1964 statt. Seit 1989 werden Programme im MUSE-Format über Satellit ausgestrahlt. Die Ausstrahlung ist inkompatibel zum normalen Fernsehen, die Sendungen müssen daher zweimal ausgestrahlt werden, einmal im SDTV-Format mit 480 Zeilen, einmal als HDTV mit 960 Zeilen.

MUSE überträgt Bilder analog, es ist allerdings eine digitale Nachbearbeitung notwendig. Bilder werden vertikal wie horizontal 2:1 unterabgetastet, das Abtastraster wird aber von Bild zu Bild verändert. Stationäre Bildelemente können daher wieder mit voller Auflösung rekonstruiert werden (1600 × 960), bewegte Elemente nur mit halber Auflösung (800 × 480).

Ein Ansatz zur Qualitätsverbesserung der Analogtechnik war in Europa Mitte der 1990er PALplus. Das Prinzip verbessert die vertikale Auflösung von Spielfilmen mit Seitenverhältnissen von 16:9 und größer. Die Qualitätsunterschiede sind auf voll PALplus-fähigen 16:9 Geräten (und nur dort!) sehr deutlich sichtbar – etwa vergleichbar anamorpher zu nicht anamorphen DVDs. Die Farbauflösung wird bei PALplus im Vergleich zu Standard-PAL durch den Einsatz von Hilfspulsen verdoppelt. Cross-Colour-Effekte treten nicht mehr auf. PALplus hat sich nicht durchgesetzt, da es zu wenige Sender (in Deutschland nur einige öffentlich-rechtliche, Premiere, ProSieben und FAB) ausstrahlten und die ersten PALplus-Geräte viel zu teuer waren. Zudem kann auf digitalem Übertragungsweg 16:9 auch in anamorpher Weise gesendet werden. ARD, ZDF und einige dritte Programme senden noch heute das 16:9-Format analog über Kabel und Antenne in PALplus.

Heutige Verfahren basieren auf reiner Digitaltechnik zwischen dem Sendestudio und dem Wohnzimmer, im Extremfall sogar zwischen Bilderzeugung und Anzeige. Bei volldigitalen Verfahren muss gegenüber analogen Videonormen zur Beurteilung einer tatsächlichen Bildqualität erstmals neben einer Bildauflösung auch der Grad einer Videokompression in eine Bewertung eingerechnet werden. Videokompression wird durch eine Effizienz (bit/px), oder abhängig von einer gewählten Auflösung durch eine Bitrate in Mbit/Sec dargestellt.

Der angegebene Bereich ist etwa das, was für befriedigende bis gute Wiedergabe notwendig ist. Moderne Lösungen sind mindestens eine Größenordnung besser als ADPCM. Aufgrund dieser hohen Effizienz können in einem für einen analogen Kanal benötigten Frequenzbereich per Satellit oder Kabel sechs und per terrestrischer Antenne drei bis vier digitale Programme gleich bleibender Qualität übertragen werden – oder ein bis zwei HD-Kanäle.

In Kanada werden zwar auch US-Sender und damit auch deren HD-Ausstrahlungen empfangen, allerdings wurde erst am 22. November 2003 mit dem NHL Eishockey-Spiel zwischen den Edmonton Oilers und den Montreal Canadiens die erste HD-Ausstrahlung des einheimischen CBC durchgeführt. Seitdem senden Bell ExpressVu, ein kanadischer Satellitensender, Rogers Cable und Videotron mehr als 21 HDTV-Sender aus allen Genrebereichen. CTV Toronto und dessen westliches Gegenstück BC CTV waren auch die ersten, die HDTV via terrestrischen ATSC sendeten. Die 2006 NHL Playoffs wurden von einer erneut gesteigerten HDTV-Abdeckung begleitet.

In den späten 1980ern begann die Federal Communications Commission (FCC) mit einem Ausschreiben zur Erstellung eines neuen Fernsehstandards für die USA und forderte später dabei sich konkurrierende Firmen auf, ihre Ressourcen und Arbeitskräfte zusammenzulegen. Diese formierten sich unter der Grand Alliance im Jahre 1993. In den 1990ern wurde in den USA ein entscheidender Schritt für die Einführung von HDTV vollzogen: Per Gesetz wurden alle landesweiten Sender (ABC, CBS, NBC, Fox) verpflichtet, ab 2006 digital zu senden, so dass die analoge Ausstrahlung beendet werden kann. Am 23. Juli 1996 strahlte das zu CBS gehörende WRAL aus Raleigh (North Carolina) als erste Fernsehstation der USA ein digitales HD-Signal aus. Diese HDTV-Übertragung war ein Major League Baseball Spiel und wurde auf dem einzigen zu der Zeit erhältlichen HDTV-Display, einem 46 Zoll Panasonic Testmonitor, in einem Dallas Circuit City Store gezeigt. Der Test wurde direkt von Panasonics Fernsehsparte eingerichtet und war die erste offizielle, kommerzielle HD-Übertragung in den USA. Ab 1998 wurden mehr und mehr HDTV-Fernsehgeräte verfügbar und ebenfalls wurde landesweit mit HD-Übertragungen begonnen - die erste war der Start der Raumfähre Discovery und John Glenns Rückkehr in den Weltraum. Dieses wurde teilweise technisch durch die Harris Corporation ermöglicht. Seit dem Jahr 2000 setzen die Sender in den USA vermehrt auf HDTV in der Primetime (abends). Der Absatz von HD-fähigen Fernsehern, LCD- und Plasmabildschirmen, sowie den dazugehörigen HD-Receivern ist groß, und die Nachfrage wächst immer weiter. Trotzdem wurde die festgelegte Abschaltung des analogen Fernsehens im Jahr 2004 auf 2007 verschoben, da man den Aufwand unterschätzt hatte. Die verwendete terrestrische Norm ist ATSC, meist in 1080i60, seltener auch 720p60. Der Mehrkanalton liegt im Dolby-AC3-Format vor. Beim HDTV-Empfang via Satellit gibt es zur Zeit nur noch zwei Anbieter: „DirecTV“ und „Dish Network“ jeweils mit eigenen MPEG2-HD-Receivern, die Umstellung auf das effizientere MPEG4-AVC beginnt Mitte 2006. Laut Betreiberangaben werden Ende 2007 über 100 HDTV Sender über DirecTV zu empfangen sein.

Der mexikanische Fernsehkonzern Televisa führte in den frühen 1990ern Experimente in HDTV-Ausstrahlungen in Zusammenarbeit mit dem japanischen NHK. Während der ersten Hälfte von 2005 begann der Kabelanbieter Cablevision, in Mexiko-Stadt fünf HD-Kanäle und Festplattenrekorder anzubieten. 2005 unterzeichnete TV Azteca mit Harris Corporation für digitale TV-Transmitter und HDTV-Encoding-Equipment, um damit High-Definition in neun mexikanische Städte zu bringen. Die Markteinführung wird in zwei Phasen durchgeführt werden. Im dritten Quartal 2006 soll HDTV-Übertragungen in Mexikos größten Märkten, Mexiko-Stadt, Guadalajara und Monterrey, verfügbar sein. Phase zwei wird das nationale Rollout sein, das HDTV-Services an sechs Städte (Matamoros, Reynosa, Nuevo Laredo, Ciudad Juarez, Mexicali und Tijuana) entlang der mexikanischen Grenze zu den USA bringen soll. Dabei soll ausgenutzt werden, dass HD-Receiver dank des früheren HDTV-Starts auf der US-Gegenseite in diesen Gegenden bereits erhältlich sind.

Während der Absatz von HDTV-fähigen Fernsehgeräten steigt gibt es noch keinen einzigen HD-Kanal. Die Regierung steckt immer noch in der Entscheidungsphase, welches Übertragungssystem genutzt werden wird, aber die Wahrscheinlichkeit für eine Entscheidung zu Gunsten des US-amerikanischen ATSC ist sehr hoch.

Seit 2001 werden Fernsehgeräte mit nativer 480p-Auflösung hauptsächlich für SDTV und DVD Benutzung angeboten. Ab 2003 wurden die ersten nativen 720p LCD-Geräte angeboten.

Die brasilianische Regierung benötigte eine lange Zeit um abzuwägen, welcher Standard für das Digitalfernsehen genutzt werden sollte. Am 29. Juni 2006 unterschrieb Präsident Luiz Inácio Lula da Silva ein Dekret zur Einführung von ISDB als nationalen Standard. Der Übergang zu ISDB soll neun Jahre betragen. Die von brasilianischen Forschern vorgeschlagenen Implementierungen von Verbesserungen des Standards, werden wegen Inkompatibilitäten sehr unwahrscheinlich von japanischen ISDB-Verantwortlichen integriert werden, sondern erst in zukünftigen Erweiterungen für alle ISDB-Länder zur Verfügung gestellt werden.

Obwohl die lokalen Behörden Ende 2006 als Zeitpunkt abgesteckt haben, sich auf einen HDTV-Standard festzulegen, gibt es politische und wirtschaftliche Überlegungen. Das chinesische Hauptland wird ein Mitspracherecht bei der Auswahl haben, um dieses Medium im direkten Umland um Hongkong zu überwachen, aber auch, um zu dem eigenen geplanten HDTV, welches ebenfalls noch nicht ausgewählt ist, soweit wie möglich kompatibel zu halten. Die Kompatibilität ist der Grund dafür, warum Hongkong Broadcaster dieses ebenfalls nutzen wollen, um so in den lukrativen südchinesischen Markt ohne kostenintensive Formatkonvertierung übertragen zu können.

Japan und Südkorea, die traditionell ebenfalls ein NTSC-Format mit 60 Hz nutzen, sind mit der Einführung von HDTV ebenfalls schon weit fortgeschritten. Es werden mehrere Programme über TV-Satellit und terrestrisch ausgestrahlt. Japan entschied sich dabei für das eigene ISDB und Südkorea nutzt das amerikanische ATSC.

In Südkorea wird von den Sendern eine Quote von mindestens 10 Stunden pro Woche für Ausstrahlungen in HD im ersten kommerziellen Regelbetriebsjahr verlangt.

Am 31. Mai 2006 wurde in Singapur mit den offiziellen HDTV-Tests begonnen. Dabei waren Mediacorp, die HD über DVB-T übertrugen, und Starhub CableVision, die HD über DVB-C übertrugen. Beide sendeten in 1080i und 50 Hz, um bei der Bildwiederholrate konform zum traditionell genutzten PAL zu bleiben. Der Testlauf unter 1000 ausgewählten Teilnehmern wird Ende des Jahres abgeschlossen, wenn auch Mediacorp und Starhub vermutlich den übrigen Kunden den Service öffnen werden.

Australien war das erste Land mit HDTV-Regelbetrieb in 50 Hz und mit MPEG-2 per DVB (via Satellit und terrestrisch), allerdings werden dort auch einige Auflösungen (z. B. 576p50) als hochaufgelöst betrachtet, die anderswo nur als EDTV eingestuft werden. Australien startete im Januar 2001, aber erst im August 2003 war HD vorgeschrieben. Danach müssen kommerzielle Sender mindestens 1.000 Stunden hochaufgelöst produziertes Material pro Jahr senden (Die nicht kommerzielle ABC darf altes Material konvertieren). Seit 2005 senden alle überregionale Senderketten (ABC, 7, Nine, TEN und SBS) von allen terrestrischen Standorten digital und analog im Parallelbetrieb. Die Sender ABC und SBS darüber hinaus noch je ein zusätzliches digitales TV Programm, sowie zwei digitale Radio Programme.

Der im Vergleich zu Nordamerika und Südostasien verspätete Start in Europa ermöglicht es den neuen Anbietern, mit moderneren, kostensparenden Verfahren zu starten (MPEG-4-AVC und DVB-S2). Außerdem steht parallel die Markteinführung vorbespielter HD-Medien (Blu-ray Disc) an.

In Europa folgten nach dem Start des neuen, paneuropäischen Satelliten-TV-Senders Euro1080 (inzwischen „HD-1“) ab 2004 in MPEG-2 einige öffentliche Testausstrahlungen, in Deutschland insbesondere der ProSiebenSat.1 Media AG. Neben einigen Live-Großereignissen wie dem Eurovision Song Contest 2003 oder dem Finale des UEFA Cup 2004/05 werden vor allem Dokumentationen, etwa der BBC, schon länger in hoher Auflösung oder auf nachträglich abtastbarem Film produziert, um sie international besser und auch zukünftig noch verkaufen zu können.

In den größten Fernsehmärkten Deutschland, Großbritannien und Frankreich haben die jeweiligen großen Bezahlfernsehanbieter den eigentlich angepeilten HDTV-Start zum Weihnachtsgeschäft 2005 wegen der Entscheidung zur neuen Bandbreite sparenden Norm MPEG-4 AVC verschoben und starteten im ersten Halbjahr 2006. Sie hofften, insbesondere mit der Fußball-WM in Deutschland Zuschauer gewinnen zu können.

Frei empfangbare private und öffentlich-rechtliche Sender halten sich bisher in den meisten europäischen Ländern mit der Einführung noch zurück.

In Deutschland sendete seit dem 26. Oktober 2005 ProSiebenSat.1 Programme parallel zum normalen Betrieb über DVB-S2 in hochkonvertiertem HDTV (1080i), Filme wurden vereinzelt in voller HDTV-Auflösung gesendet (Sender-Logo mit „HD“-Zusatz). Die beiden Sender Pro7HD und Sat.1HD sind seit dem 16. Februar 2008 abgeschaltet, wie ProSiebenSat.1 Media AG am 14. Februar 2008 mitteilte. Ob eine Wiedereinführung im Free-TV oder Pay-TV geplant ist, steht noch nicht fest, gemeldet wurde der Termin 2010. Seit Mai 2006 sendet der frei empfangbare Sender Anixe HD ein Vollprogramm in HD mit Serien, Spielfilmen und Magazinen; zeitweise sind sogar in guter HD-Qualität (1080i) aktuelle Kino-Vorschauen und der Reisekanal „Lastminute.tv“ zu sehen. Einzelne Sportarten der Olympischen Spiele 2008 wurden abends als Wiederholung gezeigt.

Die deutschen öffentlich-rechtlichen Sender geben sich trotz der mittlerweile schnellen Verbreitung entsprechend ausgestatteter Geräte in den Haushalten bisher eher zurückhaltend, wohl aufgrund der nötigen Investitionen für die Produktions- und Sendetechnik. Lediglich ARTE HD sendet seit 1. Juli 2008 parallel zum normalen Fernsehbetrieb auch in hochauflösender Fernsehnorm 720p50. Außer einzelnen echten HDTV-Sendungen werden die meisten Beiträge hochskaliert. Auf der Website von arte werden native HDTV-Sendungen per Logo gekennzeichnet. Der Regelbetrieb soll ab 1. Januar 2009 aufgenommen werden. Zur IFA 2008 sendete Eins Festival rund 120 Stunden in HD. Dreimal im Jahr (Ostern, Weihnachten und zur IFA) sendet EinsFestival über Satellit und Kabel in HDTV (720p50).

ARD und ZDF beginnen mit der Leichtathletik-Weltmeisterschaft im August 2009 in Berlin mit der HDTV-Vorbereitungsphase, weitere Sendungen sind 2009 noch zur IFA sowie an Weihnachten geplant. Mit der Übertragung der Olympischen Winterspiele 2010 wollen sie den Regelbetrieb in HDTV über Satellit starten. Die ersten TV-Serien wurden bereits seit Mitte 2008 auf HD-Produktion umgestellt.

Der Bezahlsender Premiere bot seit dem 3. Dezember 2005 drei HD-Kanäle (1080i) an. Da bei Premiere HD Film von den großen Filmstudios der HDCP-Kopierschutz verlangt wird, ist über die analogen Receiver-Ausgänge nur Standard-Auflösung verfügbar. Bei Premiere HD Sport und Discovery HD wurde dagegen auf dieses Verfahren verzichtet. Ab November 2006 entfiel ein HD-Kanal: Sport- und Filmkanal wurden zu einem Angebot verschmolzen.

In der Schweiz bietet die SRG seit Dezember 2007 auf einem 24-Stunden-Gemeinschaftskanal mit Namen HD suisse Fernsehen in HD-Auflösung (720p) für alle Sprachregionen an. Ab 2012 sollen alle sieben Programme der SRG in HDTV ausgestrahlt werden.

In Österreich sendet seit der Fußball-Europameisterschaft der ORF (Öffentlich rechtliche Sendeanstalt) sein erstes Inlandsprogramm ORF 1 hochauflösend. Übertragen wird im 720p-Verfahren gemäß der weiter unten angeführten EBU-Richtlinie auf einem eigenen Kanal namens ORF 1 HD. Es wurden alle EM-Spiele als auch Studiointerviews hochauflösend in HD übertragen. Weitere Filme und Serien folgen vereinzelt.

Seit Anfang September 2005 sendet der schwedische Pay-TV-Anbieter Canal+ den HD-Sender C More HD über Satellit und nutzt dabei im Gegensatz zu anderen HD-Sendern das ältere DVB-S und MPEG-2 (1080i). Dafür ist das Programm in ganz Skandinavien zu empfangen, mit Originalton und allen skandinavischen Sprachuntertiteln. Der schwedische ÖR-Sender SVT sendet seit Februar 2007 auf dem gleichen Satelliten (Thor, 1 Grad West) ein HDTV-Programm.

In Großbritannien sendet seit dem 22. Mai 2006 Sky sein Bezahlangebot an HD-Kanälen. Von Start an werden HD-fähige Festplattenrekorder angeboten, und für die Anfangszeit wird auf HDCP und Analogausgangsabschaltung verzichtet. Das öffentlich-rechtliche BBC bereitet den HDTV-Regelbetrieb vor und sendete die Spiele der Fußballweltmeisterschaft 2006 über Satellit und in Teilen Londons über DVB-T. Danach begann BBC mit dem „HDTV-Trial“ auf Astra, 28,2° Ost, unverschlüsselt und sendet tagsüber Preview-Trailer aus verschiedenen HD-Produktionen sowie abends Vollprogramm wie Serien und Spielfilme, alles in voller HDTV-Auflösung 1080i.

In Polen senden u.a. drei verschiedene Fernsehplattformen ihr Programm in HD. Cyfrowy Polsat bietet als HD Programme Polsat Sport HD, HBO HD, Eurosport HD und in Kürze BBC HD. Die Fernsehplattform n strahlt als HD Programme TVP HD, TVN HD, MGM HD, Discovery HD, n Sport HD, Eurosport HD, HBO HD und Filmbox HD aus. Die dritte Fernsehplattform Cyfra+ bietet als Programme Canal+ Film HD, Canal+ Sport HD, HBO HD, Filmbox HD, Eurosport HD und National Geographic Channel HD in hochauflösenderer Norm an.

In der Türkei brachte Doğan TV (Kanal D) die HDTV-Technik als Erster ins Fernsehen. Am 27. September 2006 begann Kanal D mit HDTV-Tests; mit der offiziellen Sendung am 1. Oktober 2006. Der Kanal wurde kurze Zeit später eingestellt, da Kanal D zunächst nur die Technik testen und Erfahrungen gewinnen wollte. Nach einer eineinhalbjährigen Pause wurde Kanal D HD im August 2008 regulär im Pay-TV-Angebot von D-Smart gestartet, zusammen mit drei weiteren HD-Sendern (HD Smart, Discovery HD, Eurosport HD). Ein Jahr zuvor hatte bereits der Konkurrent Digiturk erste HD-Sender aufgeschaltet: LİG TV, ein Fußballsender, der u.a. die Türkische Liga (Süper Lig) überträgt, sendet seit dem 20. Juni 2007 auch in HDTV, ebenso wie weitere vier im Laufe des Jahres auf Eutelsat W3A aufgeschaltete HD-Sender, die seit Januar 2008 abonnierbar sind (Moviemax HD, National Geographic HD, Eurosport HD, Spormax HD). Der staatliche Fernsehsender TRT übertrug die Olympischen Spiele 2008 in HDTV, jedoch wurde der Sender TRT 3 HD nach den Spielen wieder abgeschaltet. Konkrete Pläne, zur Fußball-Weltmeisterschaft 2010 einen dauerhaften HD-Sender zu starten, sind vorhanden. Der Privatsender Show TV plant, Ende 2009 über die Plattform Digiturk seine Sendungen in HDTV auszustrahlen.

In Frankreich gab es schon 2005 HD-Testsendungen über Hotbird von TF1 und Canal+, inzwischen sind mehrere Pay-TV-Kanäle aktiv. Der neue TV-Sender mit Beiträgen aus der Welt des Luxus und Glamours, Luxe.TV, strahlt unverschlüsselt via Astra 19 Grad, Astra2 auf 28 Grad und Hotbird9, 9° Ost, auf den beiden letzteren sowohl in SD (DVB) als auch in HDTV (MPEG4/AVC). Das HD-Paket von Sky-Italien umfasst derzeit vier Sender, auf Hotbird 13 Grad Ost gibt es auch noch das polnische HDTV-Paket "N-Sport". Auf diesem Hotbird begann am 25. Mai 2008 „Eurosport HD“ mit Sendungen in 1080i, teilweise hochskaliert von Eurosport-SD-Sendungen (dann fehlt die Einblendung „Full HD“). Die „Intl“-Version mit englischem Kommentar ist zeitweise frei empfangbar.

Albanien hat bisher acht HDTV-Kanäle und vier davon für das Sportfernsehen. Die Firma Digitalb richtete diese im Februar 2008 ein.

Zu den Olympischen Spielen sendet auch RTV Slovenija ein terrestrisches HDTV-Signal in der Hauptstadt Ljubljana. Gleichzeitig begann der ungarische TV-Sender M2 mit unverschlüsselten HDTV-Sendungen aus China auf Hotbird 13 Grad Ost.

Bei der Zeilenzahl wird die vertikale Bildauflösung angegeben, beim Verfahren des Bildaufbaus wird Vollbild- (progressive) oder Zeilensprungverfahren (interlaced) abgekürzt mit „p“ oder „i“. Bei der Angabe der Bildwiederholrate gibt es zwei verschiedene Konventionen: Oft wird die Anzahl der Bilder pro Sekunde ohne Unterscheidung zwischen Halb- und Vollbildern angegeben, die Nomenklatur der European Broadcasting Union (EBU), die zusätzlich einen Schrägstrich verwendet, sieht hingegen die Angabe der effektiven Vollbilder pro Sekunde vor (z. B. 720p/50, 1080i/25).

Bei dieser Regelung gibt es noch zwei zu beachtende Eigenschaften von HDTV, die zu abweichenden Nomenklaturen führen. Zum einen kann es vorkommen, dass in Vollbildern vorliegende Filme, vorrangig Kinoproduktionen, zwar im Zeilensprungverfahren übertragen werden, sich aber der Vollbildcharakter unverändert aus diesen beiden Halbbildern rekonstruieren lässt. Auf dem Papier würde zwar zum Beispiel 1080i50 bzw. 1080i/25 stehen, aber es ist auch als 1080psf25 darstellbar. Das Kürzel für das Bildaufbauverfahren ist das Progressive Segmented Frame (PsF), das anstelle des Interlace-Kürzels geschrieben wird und nur die Übertragungsart genauer beschreibt. Als Folge muss aber die Bildwiederholrate halbiert werden. Und zum anderen sind bei digitalen Kinoproduktionen mit HD-Kameras auch das Kürzel 24p zu finden. Damit kann 1080p24 gemeint sein, aber beim Digitalen Kino kann es sich auch um eine höhere Auflösung handeln.

HDTV wird mit 1080 aktiven Zeilen in Zeilensprungmodus oder 720 Zeilen im Vollbildmodus bei einem Seitenverhältnis von 16:9 in der ITU-R BT.709 festgelegt. Der Ausdruck „high-definition“ kann sich sowohl auf die Auflösungsspezifikation beziehen als auch auf Medien mit ähnlicher Schärfe wie Spielfilme.

Die beiden HDTV-üblichen Bildauflösungen sind 1280×720 Pixel und 1920×1080 Pixel, im Vollformat. Das Seitenverhältnis des Bildes beträgt 16:9. Der Auflösungsunterschied von 1280×720 gegenüber PAL (nach CCIR 601) beträgt das 2,2-fache ((1280×720p)/(720×576i)) und 1920×1080 gegenüber PAL sogar das 5-fache ((1920×1080i)/(720×576i)). - Da die zumeist (USA) verwendete MPEG-2-Komprimierung das Bild in Blöcke von 16×16 Pixel aufteilt, werden bei 1920×1080 tatsächlich 1088 Zeilen übertragen.

Beim Vergleich der Auflösungen progressiver Formate zu Bildern im Zeilensprungverfahren ist zu beachten, dass beim progressiven Format pro Zeiteinheit doppelt so viele Informationen gesendet werden wie beim Zeilensprungverfahren. Insbesondere bei viel Bewegung im Bild lassen sich also Progressive- und Interlaced-Formate nur bedingt vergleichen.

HDTV-Bilder müssen in der Praxis häufig entzerrt werden: Die Übertragung eines 16:9-Bildes wird häufig in ein 4:3-Verhältnis gestaucht, so dass bei 1080 Zeilen nur 1440 statt 1920 Punkte und bei 720 Zeilen nur 960 statt 1280 Punkte zur Verfügung stehen. Der Schärfeverlust kann durch ein gutes Mastering gelindert werden.

Die typischerweise verwendeten Bildfrequenzen betragen bei der Vollbilddarstellung 23,976 Hz, 24 Hz, 25 Hz, 29,97 Hz und 30 Hz, und bei der Halbbilddarstellung 50 Hz, 59,94 Hz und 60 Hz. Wenn es die Kapazität des Übertragungsmediums erlaubt, ist optional auch eine Vollbilddarstellung mit den Halbbildfrequenzen möglich.

Allerdings übersteigt die erforderliche Datenrate von 1080p50 und 1080p60 bei der Verwendung von MPEG-2 das von den eingesetzten Übertragungsverfahren (DVB und ATSC) vorgesehene Maximum.

Die traditionelle Frequenz von 50 bzw. 25 Hz wird für eine Darstellung des deutlich größeren dargestellten Bildes von einigen Experten als zu gering angesehen, weswegen auch in Europa die Nutzung von 60 bzw. 30 Hz erwogen wird.

Die PAL- und SECAM-kompatiblen 50 Hertz haben gegenüber den NTSC-kompatiblen 60 Hertz den offensichtlichen Nachteil eines leichter bemerkbaren Flimmerns, aber den Vorteil einer geringeren Datenrate bei gleicher Kompression oder andersherum. Kinofilme in 24p müssen bei PAL vier Prozent schneller abgespielt werden, bei NTSC können hingegen trotz korrekten Tempos wegen des nötigen Telecine-Verfahrens (3:2-Pull-up) ruckelige Bewegungen auftreten.

Du kannst Wikipedia helfen, indem du sie recherchierst und einfügst.

Für 1080i50 mit MPEG-2 wird (gemäß ITU) eine Bitrate von 27 Mbit/s empfohlen (0,52 bit/px → ca. 5,4 Mbit/s bei 576i50), bei geringeren Qualitätsanforderungen 22 Mbit/s (0,42 bit/Pixel → 4,4 Mbit/s). HD1 sendet nur mit 18 Mbit/s, also 0,35 bit/px, was etwa 3,6 Mbit/s für SDTV oder 3,75 Mbit/s bei 1,85:1- bzw. 3 Mbit/s bei 2,35:1-DVD-Filmen (Cinemascope) entspricht, wobei DVDs den Vorteil einer dynamisch anpassbaren Bitrate haben.

Um die vorhandenen Datenraten so effizient wie möglich zu nutzen, gibt es mehrere Möglichkeiten. Erstens können Filme mit einem Originalseitenverhältnis von 2,35:1 auf 16:9 beschnitten (gecroppt) und auf das vorgeschriebene 16:9-Verhältnis gebracht werden. Dabei wird kein schwarzer Rand am oberen und unteren Bildrand mitübertragen, da er keine sichtbaren Bildinformationen enthielte und somit überflüssig ist. Jedoch fallen dabei Bildinformationen an den Seiten weg. Da statische schwarze Bereiche sich effizient komprimieren lassen, gibt es nur eine geringe Datenratenersparnis. Dafür wird die Datenrate von einem kleinen erforderlichen Bildbereich auf eine größere Fläche erweitert und somit die Datenrate pro Fläche verringert. Zweitens können nur die sichtbaren Zeilen gespeichert und erst beim Abspielen die schwarzen Balken zum Auffüllen der Bildschirmauflösung eingefügt werden. Beide Verfahren werden angewandt, wenn das Seitenverhältnis von den verlangten 16:9 abweicht, also breiter wird. Eine ähnliche Methode wäre bei 4:3-Filmmaterial auf 16:9 denkbar, und würde die schwarzen Ränder (Pillarbox) an den Seiten ersetzen. Dieses wurde beispielsweise von ProSieben HD und Sat.1 HD angewendet.

Während die EBU ihren Mitgliedern derzeit 720p/50 und als eine zukünftige Option 1080p50/60 in der Produktions- und Sendeseite empfiehlt, vor allem da dies den verbreiteten Anzeigegeräten entgegenkommt, haben sich alle aktiven europäischen HD-Anbieter bisher für 1080i/25 entschieden, halten sich aber andere Optionen offen. Das EICTA-Siegel HD ready trägt dem Rechnung, indem es von Anzeigegeräten die Unterstützung der Formate 1080i und 720p mit 50 und 60 Hertz verlangt.

Darüber hinaus schreibt dieses Emblem, das keine externe Zertifizierung voraussetzt, sowohl eine analoge als auch eine HDCP fähige digitale Schnittstelle wie HDMI oder DVI vor.

Bei entsprechend gesetzten DRM-Daten (Broadcast Flag) wird das digitale Signal nur HDCP-verschlüsselt, also kopiergeschützt, vom Empfangs- zum Anzeigegerät übertragen, was allerdings nicht alle vorhandenen, eigentlich HD-fähigen Bildschirme unterstützen. Kritiker fürchten außerdem, dass die Rechteinhaber die Sender und Hardwarehersteller dazu zwingen werden, die DRM-Parameter so zu setzen, dass an ungeschützten HDTV-Ausgängen, also normales DVI oder analog (z. B. YPbPr-Komponenten-Videokabel), ein qualitativ minderes oder gar kein Signal ausgegeben wird. De facto kann der zukünftige Nutzer von HDTV wohl seine Filme in der höheren Auflösung sehen, das Aufzeichnen wird aber häufig nicht oder nur in minderer Qualität (bestenfalls DVD-ähnlich) gestattet sein.

Grundsätzlich sind bei HDTV alle beim Digitalfernsehen oder auf der DVD zum Einsatz kommenden Tonformate möglich, wobei sich aber Dolby Digital durchsetzt.

In den Transportströmen kann MPEG-1/-2 Audio Layer-2 bis Dolby Digital (AC3) von Mono bis Mehrkanalton genutzt werden.

Da HDTV als Premiumangebot gilt, wird sowohl für das Bild als auch für den Ton mehr Bandbreite bereitgestellt und somit häufig Mehrkanalton angeboten.

Vereinzelt werden noch Filme in Stereo oder gar Mono gesendet, wobei es sich dabei meistens um ältere Filme handelt, bei denen es zur Zeit der Produktion noch kein Mehrkanaltonverfahren gab und eine nachträgliche Bearbeitung des Quelltones nicht durchgeführt wurde.

In Japan wird bei einigen Sendern MPEG-2 Advanced Audio Coding (AAC) verwendet. Zukünftig sollen auch die Weiterentwicklungen Dolby Digital Plus und DTS HD in Fernsehübertragungen und auf Datenträgern genutzt werden, welche effizienter arbeiten und mehr Kanäle und Zusatzfunktionen erlauben sollen.

Alle gängigen Übertragungssysteme sind möglich. Zurzeit wird hauptsächlich über Satellit und Kabel übertragen, aber auch terrestrische und Übertragung via Internet (IPTV) sind möglich. Die Verteilung auf diese Systeme variiert von Land zu Land.

In Nordamerika wird ATSC als terrestrische Übertragungsart verwendet. Dort ist die maximale Datenübertragungsrate von 19,2 Mbit/s vorgeschrieben, die aber nicht vom Broadcaster bis zum Endkunde gehalten werden kann, da sich innerhalb der Übertragungswege so genannte eigenständige Networks befinden, die das Signal verändern dürfen, um es auf die Gegebenheiten des eigenen Netzteiles anzupassen. Dies geschieht vor allem bei Kabel- und terrestrischer Übertragung. Als Videokomprimierung wird MPEG-2 und als Tonkomprimierung können MPEG Audio und Dolby Digital verwendet werden.

In Europa wird der DVB-Standard verwendet und hauptsächlich über Satellit ausgestrahlt. Erste Kabelunternehmen fangen gerade an, HD-Sender in Ihre Netze aufzunehmen. In Frankreich werden momentan Tests mit dem dort TNT genannten DVB-T durchgeführt. Im Gegensatz zu Deutschland wird dort vom Start weg MPEG-4 als Videokodierung auch für SDTV verwendet, was auch für die HD-Kanäle genutzt werden kann. Englands BBC speist im Großraum London eine BBC-HD-Variante in das Freeview getaufte DVB-T-Netz ein. Dort wird ebenfalls ein Downpush durch Low Bandwidth Broadcasting getestet.

In der frühen Testzeit wurde für die Satellitenübertragung DVB-S genutzt, später aber auf DVB-S2 gewechselt. Die meisten derzeitigen HD-Sender in Europa verwenden DVB-S2 für den Regelbetrieb; bei angekündigten Neuaufschaltungen wird nur DVB-S2 genannt. Es verwendet im Gegensatz zu DVB-S eine verbesserte Fehlerkorrektur bei der Modulation und kann dadurch die Bandbreite bis zu 30 % effektiver nutzen. Im Kabelnetz wird das DVB-C beibehalten; es wird keine erweiterte Version, ähnlich dem DVB-S2, benötigt. Bei allen kommt die effektive MPEG-4/AVC-Videokomprimierung zum Einsatz.

In Australien wird bereits im Regelbetrieb HDTV über DVB-T ausgestrahlt, allerdings mit MPEG-2 codiert. Der deutsch-französische Kultursender Arte startete am 1. Juli 2008 mit seiner HDTV-Test-Ausstrahlung in 720p auf Astra 19 Grad Ost. Nach einer Mitteilung des französischen Ministeriums für Kultur und Kommunikation soll das Programm in MPEG4-Kompression ab 30. Oktober 2008 unverschlüsselt über DVB-T ("Télévision Numérique Terrestre") und später per Kabel und DSL verbreitet werden.

In Japan wird bei Kabel, Sat und Antenne ISDB als Standard genutzt. Für die Tonkanäle wird das effektivere Advanced Audio Coding verwendet.

Die Übertragung im Internet ist möglich, allerdings noch weit entfernt vom Regelbetrieb. Es sind vereinzelt Internetseiten mit HD-Videos zu finden, allerdings handelt es sich lediglich um herunterzuladende Kinotrailer. Via Fernsehen aufgenommene HD-Spielfilme werden manchmal über Tauschbörsen verteilt, hierbei handelt es sich jedoch durchaus um urheberrechtlich bedenkliche Kopien. Kommerzielle Dienste für IPTV oder VoD gibt es für HDTV noch nicht. Die Deutsche Telekom hat einen IPTV-Dienst auf Basis des VDSL-Netzes aufgebaut, in dem u. a. die Premiere-HD Kanäle und Bundesliga-Spiele in HD eingespeist werden. Dieses Netz wird aber zunächst nur in wenigen Ballungszentren eingerichtet.

Bildschirme mit integriertem DVB-Empfangsteil (IDTV) sind immer noch die Ausnahme. Für HDTV in MPEG-2 oder -4 sind sie nur von einzelnen Herstellern verfügbar. Auch die erste Generation dezidierter HDTV-Empfänger war häufig technisch noch nicht ausgereift; einigen fehlte es an etablierten Eigenschaften wie der Elektronische Programmzeitschrift (EPG) oder den für Bezahlfernsehen nötigen Kartenschächten (Common Interface). Für ATSC sieht die Situation besser aus, da HDTV in den USA schon früher eingeführt wurde und dementsprechend mehr Endgeräte auf dem Markt erhältlich sind. Außerdem nutzt die US-Regulierungsbehörde FCC ihre entsprechenden Befugnisse aus, um die Hersteller zu zwingen, DTV-Empfangsteile in TV-Geräten einzubauen.

Zur optimalen Darstellung von HDTV muss das Anzeigegerät eine physikalische Auflösung von 1920 × 1080 Pixel beherrschen. LCD-Fernseher stellen heute überwiegend 1366 × 768 Pixel (bei 16:9) dar, die 720p nicht ohne Interpolation darstellen können und sind daher für das von der EBU favorisierte Format 720p/50 auch nicht optimal geeignet. Daneben gibt es als „PAL optimal“ bezeichnete EDTV-Geräte mit 540 Zeilen (siehe Overscan), welche aufgrund des geraden Teilungsverhältnisses 1920 × 1080 besonders leicht interpolieren können.

Vielfach werden insbesondere Plasmageräte noch mit der NTSC/VGA-Auflösung von 480 Zeilen verkauft (EDTV). Große CRT-Geräte mit 1080 Bildzeilen sind nur in Ländern mit HDTV-Regelbetrieb erhältlich.

Aktuelle „HD-fähige“-Geräte mit meist 768 Zeilen Auflösung besitzen nur 192 Zeilen mehr als herkömmliche PAL-Geräte. Zu beachten ist erstens das breitere Seitenverhältnis – per anamorpher DVD oder DVB-SD-Ausstrahlung konnten bereits 16:9-Bilder mit den vollen 576 Zeilen aber nur 720 Pixeln pro Zeile geschaut werden. Zweitens zeigt PAL nur 25 Voll- oder 50 Halbbilder pro Sekunde an, 720p50 hingegen 50 Vollbilder, wobei durch digitale Puffer und Filter in sog. 100-Hertz-Fernsehern bereits Verbesserungen in diese Richtung erreicht worden waren.

LCD-Fernseher und fast alle anderen kathodenstrahlröhrenfreien Geräte profitieren besonders von Bildsignalen, die sie nicht auf ihre native Auflösung umrechnen müssen, d. h. üblicherweise 720p60 oder 1080i60.

Mit einem PC ist der direkte MPEG2-HDTV-Empfang mittels üblicher Digital-TV-PCI-Karten und entsprechender Software möglich, allerdings sind evtl. integrierte MPEG-Dekodierchips („full featured“) i. d. R. nur auf SDTV ausgelegt. Während das Aufzeichnen auch auf etwas schwächeren Rechnern möglich ist, erfordert das Anschauen einen relativ leistungsfähigen Computer (2-GHz-Prozessor) oder spezielle, bisher kaum erhältliche Dekodierchips. Das Konvertieren in andere Formate ist ohne teure Spezialhardware bisher nicht in Echtzeit möglich.

Die neue europäische HDTV-Variante mit DVB-S2-Satellitensignal und MPEG4/AVC-Codierung (H.264) erfordert neue Empfangskonverter/Karten und sehr leistungsfähige Bildverarbeitung im Rechner. Aktuelle Grafikkarten sollen mit neuester Software auch die MPEG4/AVC-Decodierung unterstützen und so den Prozessor entlasten können.

Zukünftig soll der HDCP-Kopierschutz auch auf Empfangs- und Grafikkarten sowie Computermonitore ausgeweitet werden.

Die beiden Spielkonsolen der siebten Generation Xbox 360 (bis 1080i YPbPr, per Software-Update auch 1080p, bei neueren Konsolen auch HDMI) und Playstation 3 (bis zu 1080i und 1080p HDMI), unterstützen HD-Ausgabe für Spiele und Filme. Nintendos Wii bietet hingegen keine HD-Ausgabe, sondern maximal 480p. Sie nähern sich so wieder den Auflösungen des PC-Spielebereichs an (dort u. a. üblich: XGA bis UXGA), denn Computermonitore und -grafikkarten verfügen bereits seit etwa zehn Jahren über eine höhere Auflösung als SDTV, d. h. spätestens seit SVGA (siehe auch: Bildauflösung).

Auch die Xbox unterstützt prinzipiell bereits HDTV (1080i YPbPr), allerdings benötigt die PAL-Version dafür einen Umbau per Mod-Chip (enigma switch). Ähnlich wurden ebenfalls für die NTSC-Version der PlayStation 2 einige Spiele mit 1080i-YPbPr-Option angeboten (z.B. Gran Turismo 4).

Für den Empfang von HDTV benötigt man eine HD-taugliche Set-Top-Box. Dies ist ein Empfangsgerät, das die Signale entschlüsseln und verarbeiten kann. Für den Empfang von Premiere HD, das schon die Fußball-WM 2006 in HD ausgestrahlt hat, muss man auf die entsprechende Kompatibilität achten. Dies ist ebenso wenig selbstverständlich wie das Beherrschen des Kompressionsstandards MPEG-4 (statt nur MPEG-2) und der bei HDTV via Satellit üblichen Modulationsnorm DVB-S2 (statt nur DVB-S).

Da HDTV-Übertragungen über Satellit und Kabel erfolgen, aber auch terrestrisch oder über IPTV möglich sind, gibt es für jeden dieser Empfangswege einen eigenen Tuner bzw. Receiver, der nicht zu den anderen kompatibel ist. Doppeltuner für den Mischbetrieb gibt es zur Zeit selten für SDTV und noch gar nicht für HDTV.

Zur Übertragung der dekomprimierten Bild- und Tonsignale können analoge sowie digitale Schnittstellen benutzt werden. Dieses wird nur dadurch eingeschränkt, ob die Schnittstelle die erforderlichen Bandbreiten und Frequenzen beherrscht und ob diese vom Rechteinhaber der Signale dafür freigegeben werden, da durch eine Broadcast Flag und Verschlüsselung bestimmte Schnittstellen abgeschaltet werden und bei den freigegebenen Verschlüsselungen angeschaltet werden.

Zu den analogen HD-fähigen Videoschnittstellen gehören VGA, inklusive DVI-Analog und DVI-Integrated, und Component Video sowie von einigen Herstellern inzwischen auch angeboten Component Video per SCART. Eine YUV-Ausgabe über die drei RGB-Leitungen muss jeweils im Gerätemenü aktiviert/vorausgewählt werden da derzeit kein Sensor Signal am SCART Pin 16 für HDTV definiert ist. Der dreikanalige Komponenten-Anschluss kann zwei unterschiedliche Farb-Pegelungen enthalten, für Standard-TV-Quellen gelten normgemäß andere Pegelverhältnisse zwischen Y (Grün), Pb (Blau) und Pr (Rot) als für HDTV-Quellen. Das resultiert im nicht normgerechten Extremfall in einer farbverfälschten Bildausgabe, z.B. bei aus Kopierschutzgründen auf SD-Qualität heruntergeschalteter Analogausgabe.

Zu den digitalen Videoschnittstellen gehören DVI-Digital und DVI-Integrated. Das Serial Digital Interface findet man vorrangig bei Projektoren für Digitalkinos und es beherrscht HDTV. Im Computerbereich soll zukünftig der DisplayPort eingesetzt werden. Für D-VHS Rekorder und für HDV-Camcorder wird vereinzelt FireWire verwendet. Über das zu DVI kompatible HDMI lassen sich Videodaten und zusätzlich noch Audiodaten und Steuersignale versenden. Bei HDMI gibt es drei Varianten. HDMI 1.0, 1.2 und 1.3 unterscheiden sich nur in den unterstützen Auflösungen, Farbtiefe und Tonnormen. So unterstützt HDMI 1.0 nur direkt die HDTV-Auflösungen, 24 bit Farbtiefe und Dolby Digital, DTS und PCM. HDMI 1.3 unterstützt auch direkt die SDTV-Auflösungen, 48 bit Farbtiefe und Dolby Digital plus (inklusive TrueHD) und DTS HD. HDMI 1.3a sorgt per "Lipsync" für eine Korrektur eventuell auseinanderlaufender Bild- und Tondaten, sollten diese z.B. über einen AV-Receiver geschaltet worden sein. Für die neuen Tonformate können auch HDMI 1.0 oder den SPDIF verwenden, allerdings müssen dazu die Signale in Echtzeit in normales Dolby Digital, DTS oder gar einzelne PCM-Ströme gewandelt werden.

Ein Problem hat sich beim Verbinden verschiedener Fabrikate von Wiedergabegeräten und Displays ergeben, weil die Industrie die digitalen Bildpegelformate "DVI-PC" oder "DVI-Video" (HDMI enthält das gleiche Videoformat wie DVI-Anschlüsse) oft in ihre Geräte implantiert hat, ohne an eine nachträgliche Umstellmöglichkeit zu denken. Der Unterschied: Während bei DVI-PC (Grafikkarten) die Helligkeitspegel von 0 bis 255 reichen, wird bei DVI-Video (Heimelektronik) ein Puffer unter- bzw. oberhalb der Schwarz- und Weißpegel reserviert. Nur manche Videoprojektoren und Flachbildschirme können per Menue zwischen PC-Level (extended/erweitert) und Video-Level (Standard/normal) umgestellt werden. Schwarz ist entweder zu hell oder untere Helligkeitsbereiche werden verschluckt, der Weißpegel ist nicht maximal oder wird übersteuert, alles je nach Geräte-Kombination. Nur bei zufällig gleicher Auslegung des digitalen Videopegels in beiden Geräten stimmt der Kontrastumfang am HDMI-Eingang, der nicht durch Helligkeits- oder Kontrastregler änderbar ist.

Im professionellen Bereich gibt es die Bandformate und HDCAM (SR) von Sony sowie DVCPro HD und D5 HD von Panasonic. HDCAM hält seit 1999 den Löwenanteil des Marktes, D5 HD wurde eingestellt und bandbasiertes DVCPRO HD ist sehr selten geworden. 2005 erschienen auch festplatten-, optische- und kartenbasierende Formate. Für optische Aufzeichnung steht Sonys XDCAM HD-Familie, für Speicherkarten Panasonics P2 und seit 2007 auch XDCAM EX von Sony mit Aufzeichnung auf SxS-Medien. Neben den dutzenden Kameras dieser Hersteller gibt es seit 2007 Kameras, die auf Festplatten aufzeichnen. RED ist die weitverbreitetste, ihre Auflösung liegt über HD. Cineforms Aspect Ratio HD und DNxHD von Avid werden durch je eine Kamera, die Ikegami Editcam HD bzw. die SI-2K von P+S Technik unterstützt.

Bisher gibt es für Privatanwender neben den auslaufenden D-VHS-Kassetten (alias D-Theater) lediglich proprietäre Kauf-DVD-ROMs mit Filmen im WMV-HD-Format, die zukünftig von der standardisierten Blu-ray Disc abgelöst werden sollen. Das ursprüngliche Konkurrenzformat HD-DVD hat nach dem Ausstieg Toshibas aus dem HD-DVD-Markt im Februar 2008 keine Zukunftsperspektive. Als Videostandard können diese Medien im VC1(WMV-HD)- oder im MPEG4/AVC-Format bespielt sein.

Für Hobbyfilmer wurde der DV- zum HDV-Standard erweitert; entsprechende Videokameras sind bereits erhältlich und bieten eine Auflösung von 1440 × 1080 in anamorphem 16:9 Seitenverhältnis und 50 und 60 Hz Bildwiederholrate im Zeilensprungverfahren.

Sony und Panasonic führen 2006 mit AVCHD ebenfalls einen neuen Camcorderstandard für Hobbyfilmer ein. Das „AVC“ steht für MPEG-4/AVC und gibt dabei den verwendeten Aufnahme-Codec wieder und der Standard definiert eine Auflösung von 1920 × 1080 bei 60 oder 50 Hz im Zeilensprungverfahren und 24 Hz im Vollbildverfahren.

Aufnahmen bestehender Videokassetten können von VHS-Videorekordern über HDTV-Bildschirme wiedergegeben werden, allerdings ist für die Aufzeichnung neuer MPEG2-HD-Aufnahmen ein D-VHS-Videorekorder nötig. HD-taugliche Festplatten-Receiver gab es in Europa anfangs nur in Großbritannien für Sky-HD (Pay-TV). Im letzten Quartal 2007 kommen die ersten Free-TV-HDTV-Receiver mit externen Festplatten auf den Markt.

Um Lizenzkosten zu umgehen, werden in Taiwan und China eigene Speichermedien und Codecs entwickelt. In Taiwan wird an der Finalized Versatile Disc (FVD) geforscht und in China sind bereits Abspielgeräte und Filme für die Enhanced Versatile Disc (EVD) verfügbar. Beide Formate weisen geringfügig mehr Speicherplatz als die DVD auf, sehen jedoch die effizienteren Codecs VC-1 von Microsoft (FVD) bzw. VP5 und VP6 von On2 (EVD) vor. In erster Linie sind diese Medien Ersatz für die DVD mit standardaufgelöstem Material, aber sie sind auch für HD-Material vorgesehen. China entwickelt zusätzlich eine eigene Abart der HD-DVD. Die FVD, EVD und China HD-DVD sind ausschließlich für den asiatischen Raum gedacht und werden im Rest der Welt nicht vertrieben werden.

Ebenfalls ist eine Verbreitung von HDTV über Video-on-Demand (VoD) für PCs und Festplattenrekorder möglich. Anlässlich einer Erotikmesse stellte Digital Playground als nach eigenen Angaben erstes Unternehmen einen hochaufgelösten Pornofilm zum kostenpflichtigen Download bereit. Die BBC prüft derzeit den Markt und die Machbarkeit, HD-Filme zusätzlich zum Digitalfernsehstrom im Downpush-Verfahren und Low Bandwidth Broadcasting zu senden, um so die HD-Filme zu verteilen und zum Simulcast anbieten zu können.

Hintergrund ist, dass insbesondere die verschiedenen Unternehmen der US-amerikanischen Filmindustrie die global vorangetriebene Umstellung von niedrig aufgelöstem (SDTV) auf hoch aufgelöstes (HDTV) Fernsehen zum Anlass nehmen wollen, die fast überall bestehenden Ausnahmeregelungen zum Urheberschutz für privates Mitschneiden von Rundfunkausstrahlungen auf SDTV-Auflösungen zu beschränken oder ganz zu kappen - da HDTV gegenüber SDTV ohnehin andere Signalverbindungen erfordert, sollen diese statt in analoger Form in einer digitalen Form etabliert werden, und zwar unter Mithilfe von HDCP in einer vor Aufnahme geschützten Form. Die Idee dahinter ist, dass durch das Mitsenden eines Broadcast-Flags der empfangende Receiver dazu aufgefordert wird, die hochauflösenden analogen Bildsignale entweder ganz abzuschalten oder auf SDTV-Auflösung zu reduzieren. Ein Bild in HDTV-Auflösung gibt es dann nur noch über den kopiergeschützten digitalen Bildausgang, der gleichzeitig die HDCP-Verschlüsselung aktiviert. Ungeschützte Sendungen wie z. B. Live-Ausstrahlungen von Sportereignissen ließen sich dann nach wie vor in HDTV-Auflösung mitschneiden, die Ausstrahlung eines Hollywood-Films aber nicht oder nur in eingeschränkter Qualität.

HDTV hat nicht direkt etwas mit Kopierschutz zu tun, der Name HDTV steht nur für hochauflösendes Fernsehen. HDTV-Geräte tragen jedoch meist das HD ready-Logo, und dieses wiederum setzt den Kopierschutz HDCP voraus. Dieser Mechanismus wird jedoch von vielen Verbraucherschützern kritisiert, da damit auch rein private Kopien verhindert werden können. Siehe auch High-bandwidth Digital Content Protection.

Ebenfalls lassen sich alle digitalen Steuerungs-, Verschlüsselungs-, oder Zuordnungsmechanismen anwenden, die auch schon heute in den digitalen Medien genutzt werden. So können Digitale Rechteverwaltung für gezielten Erlaubnisabgleich integriert werden, Verschlüsselung des Signals innerhalb der Hardware unter anderem durch Digital Transmission Content Protection angewendet werden, um ein ungewolltes Abgreifen zu verhindern, und auch Wasserzeichen im Bild-, Audio oder weiteren Bereichen gesetzt werden. Es wird zur Zeit ein für die neue DVB-Version 3.0 Content Protection and Copy Management System (DVB-CPCM) entwickelt, das das Signal nach dem Empfang verschlüsselt und nur von Geräten abspielen lässt, die sich in der Authorized Domain befinden.

Diese Mechanismen sind nicht in der HDTV-Norm vorgesehen, sondern werden wie bei allen digitalen Medien angewendet und durch das annähernd zeitgleiche Erscheinen dieser Techniken auf den Markt wird der Eindruck erweckt, dass HDTV und die genannten Mechanismen zwingend mit einander verflochten sind.

Die höhere Auflösung bringt feinere Texturen auf den Bildschirm und damit auch teilweise unerwünschte Alterserscheinungen im Gesicht und am restlichen Körper der Personen. Um diese zu überdecken, muss mehr Wert auf die Maske gelegt werden, als es bei SDTV der Fall ist. Wo beim SDTV noch durch oberflächliche Veränderungen wie Abdecken und Pudern das Gesamtbild verbessert werden konnte, werden bei HDTV neue Verfahren wie Airbrush-Schminke angewendet, oder im Zusammenspiel mit der Filmaufnahme nur bestimmte Bildeinstellungen genommen, auf denen die „Schokoladenseite“ zu sehen ist oder Unschärfefilter automatisch über Bildbereiche mit Hauttönen gelegt, um gezielt die Auflösung in einem begrenzten Teil des Bildes herunterzusetzen. So können eventuelle körperliche Unzulänglichkeiten standardmäßig oder auf Wunsch versteckt werden. Es geht so weit, dass Personen, die im Fernsehen zu sehen sind und als hübsch angesehen werden, in HDTV-Aufnahmen als nicht mehr so hübsch wahrgenommen werden. Von Phillip Swann wurde eine HDTV-Bestenliste mit den zehn hübschesten und hässlichsten Personen erstellt.

HD-Kameras kommen auch im Gegensatz zu konventionellen Filmkameras ohne großflächige Ausleuchtung der Umgebung aus, allerdings steigt dabei das Bildrauschen (Noise), was durch eine Anpassung des Signal-to-Noise Levels ausgeglichen werden muss. Diese guten Nachtaufnahmeeigenschaften waren auch ausschlaggebend für die Wahl von HD-Cams für die Filme Collateral und Miami Vice (Film) von Michael Mann, deren Handlungen nachts spielen.

Beim Kulissen- oder Bühnenbau gibt es auch Unterschiede zu SDTV Sendungen. In vielen Fällen reicht es nicht aus die Kulisse zu übernehmen, da ein für SDTV ausreichend grober Baustil oder eventuelle Beschädigungen, die bei SDTV nicht zu sehen waren, in HDTV erst zum Vorschein kommen oder deutlicher sichtbar sind. Der Umbau der Kulisse geht deshalb meistens zeitgleich mit der Umstellung auf HD-Technik vonstatten, wie man das an der The Late Show with David Letterman im August 2005 erkennen konnte.

Bei Star Trek: Enterprise kam ein anderer Nebeneffekt von HDTV zum Tragen. In der Folge „Im finsteren Spiegel - Teil.2“ gibt es eine Szene, in der biographische Hintergrundinformationen zweier Hauptcharaktere auf einem Bildschirm gezeigt wurden. Nur ein kleiner Teil davon wurde in den Dialogen wiedergegeben und der Rest war in der SDTV-Übertragung nicht zu entziffern. Der Autor Michael Sussman war sich allerdings nicht bewusst, dass der angezeigte Text in HDTV vollkommen zu entziffern und somit lesbar war. Folglich fertigten „Star Trek“-Fans Screenshots davon an und wurden auf einige Fehler im Text aufmerksam, die nicht mit dem strengen „Star Trek Canon“ (anerkannte Fakten und Chronologie innerhalb des fiktiven „Star Trek“-Universums) übereinstimmen. Unter anderem wurde das Datum von Captain Archers Befehlsübernahme der Enterprise falsch angegeben. Dieses fällt zwar nur eingefleischten Fans auf, verdeutlicht aber, dass auch mehr Wert auf Kulissen gelegt werden muss, um solche Fehler zu vermeiden oder um diese als Eastereggs zu verwenden.

Alte Filme und auch Serien wurden häufig auf Filmstreifen aufgenommen. Wenn diese Filme noch als Originalmaster vorliegen, können auch von alten Filmen und Serien hochauflösende Transfers hergestellt werden. Dabei muss der Film durch einen digitalen Filmabtaster gescannt werden. Bei alten Filmen auf Celluloid, Celluloseacetat oder Polyester können diese meistens nicht direkt übernommen werden, sondern müssen erst aufwändig restauriert werden. Dieses geht Hand in Hand mit der chemischen Reinigung des Filmstreifens vor dem Scannen und einer anschließenden digitalen Bildaufbereitung. Dieses ist sehr zeit- und kostenintensiv und wird daher nicht bei jedem alten Film zum Zuge kommen. Für einige DVD-Veröffentlichungen wurde es bereits durchgeführt, sodass diese Filme bereits in HD ausgestrahlt werden konnten und auf eine Veröffentlichung im DVD-Nachfolgeformat warten. Diese Filme haben zwar das nicht HDTV-konforme Seitenverhältnis 16:9, bieten aber dennoch die höhere Auflösung (abhängig vom Zustand des Originalmasters). Filmklassiker wie Der Zauberer von Oz und Serien wie Ein Käfig voller Helden wurden in den USA bereits in HD ausgestrahlt.

George Lucas ließ übrigens die alte Star Wars-Trilogie vorsorglich in RGB scannen, um so das bestmögliche Ausgangsmaterial zu haben und die Kosten für eine erneute Bearbeitung für zukünftige HDTV-Versionen zu vermeiden.

Für eine hochauflösende Ausstrahlung und Verwertung auf HD-DVD wurde von der Sci-Fi Serie Star Trek: The Original Series nicht nur eine Filmabtastung des auf Zelluloid gedrehten Materials und Restauration vorgenommen, sondern die aus den 60er Jahren stammenden Spezialeffekte und Modelle gegen aktuelle, aus den Computer stammenden Visual Effects ausgetauscht. Dieses Remastering betrifft vor allem die Weltraumszenen mit Außenansichten der Raumschiffe. Wenn sich die Staffeln auf HD-DVD gut verkaufen, dann könnten solche Überarbeitungen auch auf weitere Star Trek Serien ausgeweitet werden, um auch diese erneut, und dieses Mal hochauflösend, veröffentlichen zu können.

Durch die höhere Auflösung von HDTV ist der Betrachtungsabstand, ab dem das Bild unscharf wirkt, bei gleicher Bilddiagonale geringer gegenüber SDTV. Mehr Details können bei HDTV nur wahrgenommen werden, wenn man nah genug am Bild sitzt. Ist der Betrachtungsabstand relativ groß, dann kann man die Auflösung von HDTV nicht von einer niedrigeren Auflösung unterscheiden – rein rechnerisch ergeben sich aus dem Auflösungsvermögen des menschlichen Auges mit ungefähr einer Winkelminute Grenzen von etwa dem 2,3-fachen (Auflösung 1280 × 720) und 1,6-fachen (1920 × 1080) der jeweiligen Bilddiagonalen für die Möglichkeit der Wahrnehmung. Die höhere Auflösung ist also insbesondere vorteilhaft bei Beamern (wenn sie die Auflösung darstellen können) und großen Wiedergabegeräten.

Bei HDTV sinkt die Gefahr des Zeilenflimmerns (1080i) oder verschwindet ganz (720p). 720p wird bei Sehtests auf Bildschirmen üblicher Größe, d. h. bis zu einer Bildschirmdiagonale von etwa einem Meter, von den meisten Menschen gegenüber 1080i vorgezogen. Die EBU empfiehlt ihren Mitgliedern 720p wegen der geringeren benötigten Datenrate und außerdem wegen des nur höchstens einmal im Sendezentrum und dort mit professioneller Hardware nötigen Deinterlacings.

Artefakte (oder auch Macroblocking genannt) können beim digitalen Fernsehen bei einem zu geringen Verhältnis von Bildneuauflösung und Bandbreite entstehen oder bei nicht effizienten Kompressionsalgorithmen und -equipment von Seiten des Anbieters (Sendeanstalt, Medienautoren, etc). Vor allem bei schnellen Szenen mit hoher Bildbewegung tritt diese „Blöckchenbildung“ auf. Auch wenn eine höhere Bandbreite und neuere effizientere Codecs im Gegensatz zu SDTV benutzt werden, können auch hier Artefakte durch Bandbreitenengstellen auftreten.

Bildaussetzer (Glitch) im Zusammenhang mit HDTV wurden bei den ersten HD-Receivern gemeldet. Dieses konnte auf die frühe Firmware der Geräte, der höheren Bandbreite des Senders und den Einsatz von HDCP zurückgeführt werden. Da die HDCP-Verschlüsselung beim Umschalten zu einem Sender, der dieses verlangt, überprüft und aktiviert werden muss, konnte es vorkommen, dass in den ersten Augenblicken nach Erscheinen des Fernsehbildes kurze Bildaussetzer gefolgt von weiteren Nebenerscheinungen, wie Grünstich oder Artefakten, auftraten.

Beim Abspielen von HD-Aufnahmen (DVR-Zwischenspeicherungen) kann es vorkommen, dass wegen der hohen Bandbreite und einem nicht ausreichend leistungsfähigen Abspielgerät nicht alle Daten geladen werden - obwohl die Daten an sich unbeschädigt und vollständig vorliegen.

Wenn bei der Aufnahme wegen eines gestörten Empfangssignals, zum Beispiel durch Gewitter oder technischer Probleme des Senders Daten unvollständig vorliegen, werden sie beim Abspielen durch Interpolation hochgerechnet - was ebenfalls zu Glitches führen kann.

Werden zur Bilderzeugung günstige Wandlerbausteine verwendet, d.h. alle drei Grundfarben auf einem CCD abgetastet, so kann dies zu deutlich erkennbaren Abtastfehlern führen. Vereinfacht ausgedrückt führt eine Ungleichgewichtung der Farbabtastung zu wiederkehrenden Bildfehlern, welche besonders stark auffallen, hat das abgetastete Bild ein ungünstiges Verhältnis zur Bildsensorauflösung. Bei 3CCD Lösungen tritt dieser Bildfehler nicht auf.

Je höher die Auflösung eines Bildes und je höher der Detailgrad im Bild desto höher die Wahrscheinlichkeit für den Moiré-Effekt. Dieser Effekt tritt bei einer Überlagerung sich periodisch wiederholender Bildmuster auf. Im Fernsehen ist dies an Personen mit karierter Kleidung („Fischgrätenmuster“) zu sehen. Dieser Effekt dürfte bei HDTV wegen der höheren Details sogar stärker auftreten (sofern die Kleidung der Moderatoren, Bühnenbilder u. ä. nicht entsprechend gewählt werden).

Das Hochskalieren (engl. Upscaling) ist ein Echtzeitinterpolieren einer geringeren Auflösung zu einer höheren; selbstverständlich wird dabei das Bild nicht detailreicher.

Verschiedene Geräte können empfangene oder ausgelesene SD-Signale in HDTV-Auflösungen umwandeln und an ihren Schnittstellen ausgeben. Zum Beispiel wird in DVD-Spielern ein DVD-Film mit PAL-Auflösung (720 × 576 Pixel) hochgerechnet und meist über digitale Ausgänge (DVI, HDMI) an den Monitor ausgegeben. Erhält ein Anzeigegerät über seine Eingänge eine Auflösung, die es nicht nativ darstellen kann, muss die stets integrierte Upscale-Einheit das Signal anpassen. Einige Geräte mit hoher Anzeigeauflösung werden dafür kritisiert, dass alle eingehenden Signale einer Skalierung unterzogen werden, wobei die Zwischenauflösung mitunter nicht der nativen Auflösung entspricht und so Detailschärfe verloren geht. Eine dritte Variante sind spezialisierte externe Geräte, die zwischen Empfangs- und Anzeigegerät geschaltet ausschließlich für die Signalkonvertierung zuständig sind. Die erzielten Ergebnisse können beim Heimequipment, abhängig von der verwendeten Einsatzart und der Leistung der Geräte, erheblich variieren.

Das Hochskalieren wird auch von einigen Sendeanstalten vorgenommen, um SD-Sendungen innerhalb eines HDTV-Angebotes auszustrahlen. Die dafür verwendeten professionellen Geräte erreichen zwar in der Regel bessere Resultate als übliches Endanwenderequipment und das Signal profitiert üblicherweise von der im Vergleich zur parallelen SD-Ausstrahlung höheren zur Verfügung stehenden Datenrate (annähernd DVD-Qualität, „near DVD“), aber die Qualität von echten HD-Quellen erreichen sie nicht.

Eine Skalierung kann auch nötig sein, wenn das Seitenverhältnis des Signals (z. B. 4:3) und des Bildschirms (z. B. 16:9) nicht übereinstimmen. Das „harte“ Einfügen schwarzer Balken (Letterbox, oben und unten, bzw. Pillarbox, links und rechts) ist im Digitalfernsehen nur noch begrenzt nötig, nämlich bei Formaten breiter als 16:9, wird aber von manchen Sendeanstalten trotzdem gemacht, da sich die schwarzen Bereiche sehr effizient komprimieren lassen. Es gibt neben schwarzen Balken auch andere Verfahren zur Anpassung von Signalen mit abweichenden Bildseitenverhältnisse in Endgeräten, darunter Abschneiden (Pan and Scan), lineares Aufblasen (Zoom) oder Stauchen in eine Richtung, ggf. in ein Zwischenformat (16:10, 14:9, 5:3) und nichtlineares Aufblasen, bei dem das Bildzentrum weniger verzerrt wird als die Außenbereiche.

Die Chips, die diese und weitere Funktionen bereitstellen, werden von Unternehmen wie Faroudja oder Pixelworks erzeugt und in Fernseher, Projektoren, etc. verbaut.

Auf der CeBIT 2006 wurde ein Prototyp mit vierfacher Pixelanzahl (3840 × 2160 Pixel) von HDTV vorgestellt. Diese Displays sollen bevorzugt in Bereichen eingesetzt werden, in denen äußerst detailreiche digitale Bilder benötigt werden, wie technische Zeichnungen oder Röntgenaufnahmen. Die doppelte Zeilen- sowie Spaltenanzahl erleichtert das Hochskalieren von HDTV, da jedes Pixel der 1080i/p Quelle exakt vier Pixel der QuadHDTV Auflösung entspricht. Dieses interpolieren bringt zwar keine neuen Bilddetails, aber löst das Interpolationsproblem von PAL zu HDTV, da dort keine ganzzahligen Multiplikationen möglich sind. Wann diese Displays auf dem Markt erhältlich sind ist unbekannt.

In Japan testet der Fernsehsender NHK bereits eine Weiterentwicklung von HDTV namens Ultra High Definition Video (UHDV). Dieses Format hat eine Auflösung von 7680 × 4320 Pixel, ist ausschließlich für 60 Vollbilder pro Sekunde ausgelegt und unterstützt bis zu 22.2 Audiokanäle. Das Format wurde zwar für den Fernseheinsatz entwickelt, schließt aber auch die Lücke zwischen Fernsehen und digitalem Kino, da HDTV keine ausreichende Auflösung besitzt, die das digitale Kino vorschreibt. Um eine einfache Skalierung zu ermöglichen wurde die vierfache Zeilen- sowie Spaltenanzahl zu HDTV genutzt. UHDV befindet sich in einer sehr frühen Entwicklungsphase und bevor dieses im Sendebetrieb eingesetzt werden kann, müssen unter anderem die massiven Voraussetzungen an Bandbreite gelöst werden und weitere effizientere Komprimierungsmethoden entwickelt werden.

Beim Wechsel vom analogen Kino mit Filmen auf Polyester oder einem anderen Trägermaterial hin zum Digitalkino mit digitalen Filmen, Zuspielungen und Projektion wurden auch Vorschläge unterbreitet, die HDTV-Auflösungen in den sich im Entstehen befindenden Digitalkinostandard zu integrieren. Das Gremium ITU-R SG 6 der International Telecommunications Union, welche eine UN-Einrichtung ist, vertrat die Broadcastseite und hat unter anderem den HDTV-Standard erarbeitet. Die ITU versuchte, den HD-Standard 1080p als Grundlage für D-Cinema zu etablieren. Auch wenn sich diese Norm nicht etablierte und die Verleihe dieses Vorhaben zurückwiesen, da die Bildqualität von HD nicht für die Kinoprojektion ausreiche, sind dennoch fast ausnahmslos alle digital produzierten Kinospielfilme 1080p (siehe auch digitale Kinokamera).

Die Digital Cinema Initiative (DCI) legte im September 2004 in Version 1.0 ihrer 'unverbindlichen technischen Spezifikation' ein Speicher- und Transportformat für digitalen Film fest und teilte dieses der SMPTE mit. Darin beträgt die Master-Auflösung 2K und 4K: Gemäß DCI 1.1., Abschnitt 3.2.1.2. sowie 3.2.1.8 beträgt die Auflösung .

Dennoch stellt die 1080p Bildauflösung den Löwenanteil der digitalen Kinospielfilme dar, obwohl HDTV-Bildauflösungen als unzureichend abgelehnt wurden. Der Löwenanteil der digitalen Projektoren in Kinos stellen 1080p oder 2K dar, 4K-Projektoren sind äußerst rar - während tausende 1080p/2K-Kinos existieren (alleine in den USA über 3000), sind es in 4K grade ein paar Dutzend. Das Kino kann von HDTV-Ausstrahlungen profitieren, da sich zusätzliche Einnahmequellen außerhalb des Kerngeschäftes erschließen lassen. So können besondere Events wie Sportübertragungen und Konzerte live in Kinos übertragen werden, da sich Empfänger für digitale Signale einfach in das vorhandene digitale Kinoequipment einfügen lassen. Und auch wenn die Auflösung von HDTV nicht der von 4K entspricht, kann diese dennoch besser sein, als würde das Signal einer herkömmlichen Fernsehübertragung oder einer 720p-Sendung auf die Leinwand projiziert werden. Auch stellt 1080p schon einen Auflösungsgewinn dar, gemäß den unabhängigen Messungen der internationalen Gremien wie bspw. der ITU sind in regulären, 35-mm-projizierenden Kinos die Auflösungen unterhalb von 1080p.

Unter Stereoskopie versteht man jede Technik, die fähig ist, dreidimensionale visuelle Informationen mit zweidimensionalen Bildern zu übertragen und so den Eindruck echter räumlicher Tiefe beim Betrachter zu erwecken. Der räumliche Eindruck in Fotos oder Filmen wird durch zwei übereinander gelegte Einzelbilder erstellt, die aus zwei leicht unterschiedlichen Positionen (in der Regel Augenabstand) aufgenommen wurden. Im Kino oder Fernsehen wurden diese 3D-Filme nur selten für spezielle Vorführungen benutzt, da erstens die Produktion der 3D-Filme aufwändiger und damit teurer ist und weil zur Betrachtung dieser Filme eine besondere anaglyphe oder polarisierende 3D-Brille genutzt werden musste, die nicht jeder Zuschauer besitzt und nicht für jede Sendung tragen will. In den 1950er Jahren wurden 3D-Kameras gerne für Horrorfilme genutzt, und auch heute noch werden vorrangig Dokumentationen in Stereoskopie gedreht. Diese Filme lassen sich auch von Zelluloid auf digitale Medien und in HD-Auflösung überspielen oder werden direkt in HD aufgenommen. Seit Frühjahr 2007 gibt es im Kölner "Cinedom" ein 3D-Kino mit Stundenfilmen ähnlich wie beim IMAX-3D, allerdings projiziert mit einem Digitalprojektor (DCP 70). Die dort eingesetzten aktiven 3D-Brillen (LCD-Shutter) sind sehr leicht und fast mit den früher üblichen Pol-Brillen zu verwechseln. Der Lichtverlust ist ähnlich hoch, aber dafür ist die Wiedergabe absolut flimmerfrei und hochwertig, außerdem unabhängig von der Kopfhaltung. Der neue Walt Disney Computer-Animations-Film "Triff die Robinsons-3D" ist ein Beispiel für die 3-dimensionale Zukunft des digitalen Kinos. Am 21. November 2005 strahlte der US-amerikanische Fernsehsender NBC die Folge „Still Life“ der auch in HDTV gesendeten Serie Medium als 3D-Film aus, in denen einige Szenen mit 3D-Effekten aufgewertet wurden.

Es gibt auch Versuche, 3D-HD-Signale auf „autostereoskopische“ 3D-Displays zu bringen, auf denen der 3D-Effekt ohne spezielle 3D-Brille zu erkennen ist. Philips zeigte auf der CeBIT 2006 einen Prototypen, auf dem auch 3D-Material der KUK Filmproduktion GmbH zu sehen war.

Die Übertragung der Bilder kann entweder als ein Signalstrom geschehen, in dem beide perspektivischen Bildhälften mit anaglyphem Farbversatz (in der Regel rot/blau) gesendet werden, oder als Zeilensprung-Halbbilder für LCD-Shutter-Brillen. Andere Methoden benötigen zwei getrennte Signalströme für jede der perspektivischen Bildhälften, und somit wird die doppelte Bandbreite benötigt. HDMI bietet dabei genug Bandbreitenreserven, um zwei 1080p60-Datenströme zum Display zu übertragen. Um eine einwandfreie Wiedergabe zu gewährleisten, muss die Synchronisation zwischen den beiden getrennten Signalen dabei erhalten bleiben. Ebenso muss das Medium, das diese getrennten Informationen beinhaltet, ausreichend Kapazitäten besitzen und die Ausgabegeschwindigkeit gewährleisten. TDVision verspricht mit seinem “TDV Codec”, der auf der Fachmesse SID 2008 präsentiert wird, 3D-Video in HDTV auf herkömmlichen Blu-ray Discs zu ermöglichen.

Zum Seitenanfang



Hintergrundbeleuchtung

Die Komponenten zur Hinterleuchtung von LC-Bildschirmen (LCDs) und -anzeigen elektronischer Geräte werden als Hintergrundbeleuchtung oder auch englisch als Backlight bezeichnet. Beispiele sind digitale Messgeräte, Mobiltelefone oder Flachbildschirme von Fernsehgeräten und Monitoren. Bei LCD wird dadurch eine Kontraststeigerung gegenüber nicht selbstleuchtender, rein reflektiver Arbeitsweise erreicht.

Die Aufgabe ist, den Bildschirm von hinten flach, gleichmäßig und effizient zu beleuchten. Die Farbe der Lichtquelle muss bei Farbbildschirmen weiß sein (die einzelnen Farbpixel des LCD lassen ihre jeweilige Farbe passieren), wohingegen sie bei monochromen Anzeigen beliebig gewählt werden kann. Die Lichtquelle darf nicht flimmern, um u. a. Überlagerungen (Schwebungen) mit der zeitmultiplexen Ansteuerung der Anzeigeelemente bzw. Pixel zu verhindern.

Leuchtdioden (siehe auch LED-Backlight) sind in Relation zu ihrer Lichtstärke immer noch sehr teuer. Zur Hintergrundbeleuchtung werden sie deshalb vor allem dort eingesetzt, wo sie ihre Vorzüge – lange Lebensdauer, Robustheit und kleine Abmessungen – besonders zur Geltung bringen können. Ein typisches Beispiel sind Bildschirme für mobile Kleingeräte wie Mobiltelefone oder Navigationsgeräte. Mit LEDs bestückte LCD-Fernseher sind im Handel erhältlich, haben sich aber bisher (2008) nicht auf breiter Front durchsetzen können.

Als kostengünstige Lichtquellen werden am häufigsten Leuchtstoffröhren (außer bei Großanzeigen meist Kaltkathodenröhren) verwendet. Ihre UV-Strahlung wird durch Verwendung speziellen Rohrglases blockiert, um die umgebenden Kunststoffe nicht zu schädigen. Kaltkathodenröhren finden sich bei nahezu allen Laptops, Monitoren, LCD-Fernsehern sowie einigen PDAs.

Für den Einsatz als Hintergrundbeleuchtung besonders geeignet erscheinen Lichtquellen, die von vornherein Flächenstrahler sind, weil damit die Anforderungen an die Lichtführung deutlich verringert werden. Bereits seit etwa 1950 gibt es Elektrolumineszenz-Folien, die mit weniger als 1 mm Stärke extrem flach sind. Der Wirkungsgrad, die Lebensdauer und die erzielbare Leuchtdichte von Elektrolumineszenz-Folien sind aber so gering, dass ein Einsatz in Monitoren oder Fernsehgeräten nicht sinnvoll ist. Als Flächenstrahler realisierbar sind weiterhin Xenon Niederdrucklampen mit dielektrisch behinderter Entladung (z.B. Planon von OSRAM) sowie organische Leuchtdioden (OLEDs). Diese könnten in einigen Jahren kommerziell erfolgreich werden, sobald der Wirkungsgrad und die Lebensdauer den Marktanforderungen entsprechen.

Glühlampen werden für Hinterleuchtungen nicht mehr benutzt.

Das von punkt- oder stabförmigen Lichtquellen ausgesandte Licht muss möglichst gleichmäßig über die Fläche des Backlight verteilt werden. Dies bezeichnet man als Lichtführung. Bei relativ kleinen Backlights wird das Licht meistens an den Stirnseiten eines Lichtleiters eingespeist. In der Praxis ist der Lichtleiter eine flache Platte aus einem transparenten Kunststoff wie etwa Acrylglas. Diese enthält Extraktoren, die das Licht aus dem Lichtleiter auskoppeln. Die Auskopplung kann durch im Lichtleitermaterial verteilte streuende Strukturen, durch gezielte feine Oberflächenstrukturen oder durch feine, aufgedruckte Muster realisiert werden. Die inhomogene Verteilung der auskoppelnden Strukturen bewirkt, dass die gleichmäßige Ausleuchtung der Fläche auch z.B. mit nur einer stirnseitig einstrahlenden Kaltkathodenröhre erreicht wird. Zur Vergrößerung der Leuchtdichte können die Lichtquellen aber auch an zwei oder allen vier Stirnflächen angebracht werden. Ein Backlight nach diesem Prinzip wird als "edge lit backlight" bezeichnet.

Mit zunehmender Größe der Lichtquelle (und konstantem Seitenverhältnis, z. B. 16:9) wächst die Summe der Seitenlängen nur proportional zur Länge einer Seite, die Fläche dagegen quadratisch. Da die Leistung oder der Wirkungsgrad der Lichtquellen nicht beliebig gesteigert werden können, sind die "edge lit backlight" hier prinzipiell begrenzt. Für größere Formate werden deshalb Konstruktionen eingesetzt, die von den bekannten Leuchtkästen abgeleitet sind. Die Lichtquellen befinden sich dabei in einer flachen Wanne, die das Licht in ihrem Innern diffus reflektiert und nur zur offenen Seite hin austreten lässt. Für Leuchtstofflampen werden oft speziell geformte Reflektoren und für LEDs Diffusorlinsen eingesetzt, damit trotz einer geringen Bautiefe der Hintergrundbeleuchtung das aus der Lichtwanne austretende Licht annähernd homogen ist.

Das vom Lichtleiter oder der Lichtwanne verteilte Licht hat eventuell noch eine räumliche Struktur und muss gleichverteilt werden, damit es einer absolut gleichmäßig weiß leuchtenden Fläche nahe kommt. Eine einfache Lösung ist eine opal streuende Platte zwischen Lichtleiter oder Lichtwanne und LC-Bildschirm.

Von der Firma 3M wurden z. B. die sogenannten Vikuiti-Folien entwickelt, die das Licht gegenüber einem opalen Diffusor um den Faktor Zwei besser ausnutzen. Diese Folien reflektieren all jenes Licht zurück zum Lichtleiter, das hinsichtlich Richtung und Polarisation für die Hinterleuchtung des LCD nicht geeignet ist. Dieses Licht wird im Lichtleiter gestreut, dabei in Richtung und Polarisation vermischt und gelangt erneut in Richtung LCD. Ähnlich einer geometrischen Reihe wiederholt sich der Vorgang und führt zu einer besseren Ausnutzung des Lichtes.

Das Prinzip der Hinterleuchtung wird u.a. auch in der Lichtwerbung benutzt, um selbstleuchtende Logos, Schriftzüge oder fotografische Aufnahmen herzustellen. Weitere Beispiele sind hinterleuchtete Klingel- und Namensschilder sowie Hausnummern. Auch hierfür werden meist Leuchtstoffröhren, vereinzelt jedoch auch Leuchtdioden oder Glühlampen eingesetzt. Die Ultraviolett-Filterung bzw. UV-Resistenz der Werkstoffe und Motive ist hier von besonderer Bedeutung, da die Nutzungsdauer sehr viel höher als bei elektronischen Geräten ist.

Lichttische und -kästen zur Betrachtung von Bild- und entwickeltem Filmmaterial arbeiten ebenfalls nach dem Prinzip der Hinterleuchtung.

Für die genannten Beispiele ist im Deutschen der Begriff backlight nicht üblich.

Zum Seitenanfang



Grundig AG

Radio-Fernsehkombination Zauberspiegel 348 (1957)

Die Grundig AG war ein vom Radiohändler Max Grundig gegründetes deutsches Unternehmen für Unterhaltungselektronik mit Sitz in Fürth und später Nürnberg. Es wurde zu einem Symbol des westdeutschen Wirtschaftswunders und galt lange Zeit als sogenanntes Traditionsunternehmen. Im April 2003 musste das Unternehmen Insolvenz anmelden.

Teile des früheren Geschäftsbetriebes agieren rechtlich unabhängig und selbstständig. Die Bezeichnung Grundig wird dabei sowohl als Firmenname als auch als Produktmarkenbezeichnung verwendet.

Zu den Kernprodukten der Grundig AG gehörten Geräte der Unterhaltungselektronik (z. B. Radios, Fernseher, Tonbandgeräte, Videorecorder, HiFi-Anlagen), Videoüberwachungs- und Einbruchmeldeanlagen (Sicherheitstechnik), Messtechnik, Autoradios, Satelliten-Receiver, usw., später auch Klein-Elektrogeräte (z. B. Rasierer, Haarschneidemaschinen, Haartrockner) und Büroelektronik (z. B. Diktiergeräte).

Die Geschichte des Konzerns begann 1930 in Fürth mit der Gründung des Radio-Vertrieb Fürth, Grundig & Wurzer (RVF). Nach Kriegsende 1945 erkannte Max Grundig den Absatzmarkt für Radios und leitete die Produktion des Gerätebausatzes „Heinzelmann“ ein. 1947 wurde der Grundstein für ein Fabrik- und Verwaltungsgebäude an der Fürther Kurgartenstraße gelegt, das schon nach kurzer Bauzeit als Hauptfertigungsstandort fungierte. Ein sichtbares Zeichen für die Verbindung mit der Stadt Fürth war die Aufnahme des Fürther Wappens mit dem Kleeblatt in das Firmenlogo. 1951 wurden die ersten Fernsehempfänger in einer neuen Fabrikhalle gefertigt - der Standort und das Unternehmen wuchsen rasant. Grundig war zu dieser Zeit Europas größter Rundfunkgerätehersteller. Unternehmen aus Nürnberg, Frankfurt am Main und Karlsruhe wurden aufgekauft, darunter die Adlerwerke und Triumph. Beide Werke fusionierten 1956 zur Triumph-Adler AG und produzierten seither nur noch Büromaschinen, jedoch nicht unter der Bezeichnung Grundig, sondern mit eigenen Namen. 1960 entstand das erste Grundig Werk im Ausland - in Belfast (Nordirland) wurden Tonbandgeräte gefertigt. 1965 folgte eine Fabrik für Autoradios in Braga (Portugal). Auch auf der Fürther Hardhöhe und in Nürnberg-Langwasser entstanden neue Fertigungshallen. 1968 verkaufte die Grundig-Werke GmbH die Triumph-Adler AG an einen US-amerikanischen Konzern und wurde ab 1972 als Grundig AG weitergeführt.

Zu Beginn der 1980er Jahre brach der Umsatz der Grundig AG erstmals ein. Die Gründe dafür waren vielfältig. Zudem kam zu dieser Zeit vermehrt japanische Unterhaltungselektronik auf die europäischen Märkte. 1983 lag die Beteiligung des niederländischen Elektrokonzerns Philips an der Grundig AG bei 24,5 Prozent. Im Dezember 1983 meldete die Geschäftsführung einen Gruppenumsatz von 3,06 Milliarden DM. Der an die Max-Grundig-Stiftung abgeführte Gewinn betrug 44 Millionen DM. Im April 1984 erhöhte der Philips-Konzern seine Beteiligung auf 31,6 Prozent und übernahm die Leitung der Grundig AG. Der bisherige Geschäftsführer und Firmengründer Max Grundig schied aus der Unternehmensführung aus. Im April 1984 billigte das Bundeskartellamt die Fusion zwischen Philips und Grundig unter der Bedingung, dass Grundig seinen Diktiergerätevertrieb verkaufen musste.

Der Philips-Konzern gab 1998 aufgrund unbefriedigender Entwicklung des Unternehmens Grundig an ein bayerisches Konsortium unter Führung von Anton Kathrein (persönlich haftender Gesellschafter der Kathrein Werke KG) ab. Ende Juni 2000 wurde der Firmensitz von Fürth in das benachbarte Nürnberg verlegt. Das Unternehmen erwirtschaftete 2001 einen Umsatz in Höhe von 1,281 Milliarden Euro, machte dabei jedoch 150 Millionen Euro Verlust. Die Banken verlängerten daher im Herbst 2002 die Kreditlinien nicht mehr, und der Grundig-Konzern musste Mitte April 2003 Insolvenz anmelden.

Ende der 1980er Jahre hatte die Grundig AG noch über 28.000 Beschäftigte. Im Jahr 2003 waren im Unternehmen nur noch rund 3.500 Mitarbeiter angestellt. Die hohen Pensionsbelastungen stellten bei den Verhandlungen um einen potentiellen Investor ein entscheidendes Problem dar.

Anteilseigner an der Grundig AG waren die BEB (Bayerische Elektronik-Beteiligungs GmbH & Co. KG), bestehend aus Kathrein, Bayerische Landesbank Girozentrale, Bayerischer Sparkassen- und Giroverband, HypoVereinsbank AG und der Bayerischen Landesbank für Aufbaufinanzierung.

Im Januar 2004 wurde der Bereich Home Intermedia System (HIS) der Grundig AG vom türkischen Elektronikhersteller Beko Elektronik und dem britischen Unternehmen Alba Radio zu einem Kaufpreis von rund 80 Millionen Euro übernommen und heißt in Folge Grundig Intermedia.

Der Bereich Bürogeräte wird von der jetzt selbständigen Grundig Business Systems weitergeführt.

Der ehemalige Geschäftsbereich Grundig Car InterMedia System wurde am 17. November 2003 von der Delphi Corporation übernommen. Neben den Bereichen Autoradio zählen auch OnBoard-Units für Mauterfassungssysteme zum Produktspektrum (Toll Collect).

Zum 1. Mai 2004 wurde die Grundig SAT Systems (GSS) GmbH als Management-Buy-out gegründet. Sie übernimmt die Tätigkeiten des ehemaligen Grundig-Bereichs „Kopfstationen und Satelliten-Systeme“.

Die Produktion der Grundig Intermedia erfolgt seitdem in Istanbul über den Eigentümer Beko Elektronik und zum Teil auch in Asien über Fremdfirmen. Im Oktober 2006 und Januar 2007 werden zwei eigene Fertigungslinien für LCD-Fernseher der Marke Grundig bei Beko Elektronik in Istanbul in Betrieb genommen.

Zum 18. Dezember 2007 übernahm die türkische Koç Holding Tochter Beko Elektronik auch die 50% der Anteile von Alba Radio an der Grundig Multimedia B.V., der Mutterfirma der in Nürnberg ansässigen Grundig Intermedia. In Folge benennt sich Beko Elektronik im April 2008 um in Grundig Elektronik. Die Grundig Intermedia in Nürnberg bleibt eine Tochter dieses Unternehmens.

Nach dem Versuch mit Produkten, die „designed and developed in Germany“ sind, wieder eine führende Marke in Deutschland und Europa zu werden, wird zum Jahresende 2008 die Entwicklung in Nürnberg geschlossen und bei Grundig Elektronic in Istanbul werden weitere 450 Beschäftigte entlassen. Der in Nürnberg verbliebene Rest der Grundig Intermedia GmbH wird sich auf den Vertrieb der von der Grundig Elektronik AS entwickelten und gefertigten Geräte des mittleren und niedrigen Preissegments im deutschsprachigen Raum konzentrieren.

Zum Seitenanfang



Deinterlacing

Zeilenentflechtung (engl. Deinterlacing) bezeichnet einen Vorgang, bei dem Bilder eines im Zeilensprungverfahren vorliegenden Videosignals in Vollbilder konvertiert werden. Dies ist grundsätzlich notwendig, wenn die Aufnahmekamera mit Zeilensprung arbeitet und Aufnahmekamera und Anzeigebildschirme einen unterschiedlichen zeitlichen und vertikalen Bildaufbau haben. Dazu zählen neben 100-Hz-Fernsehgeräten alle Nicht-Röhren-Fernseher, also LCD- und Plasmabildschirme. Neben Direktdarstellung sind auch Rückprojektionsbildschirme und Frontprojektoren von diesen Techniken betroffen. Auch wenn Fernsehprogramme oder Video-DVDs mit Zeilensprungursprung auf Computermonitoren aller Art (außer den antiquierten Videomonitoren der alten Heimcomputer) betrachtet werden sollen, ist immer ein Deinterlacing notwendig. Nur herkömmliche 50-Hz-Röhren-Fernsehgeräte und 50 Hz-Röhren-Projektoren kommen ohne Deinterlacing aus. Das Entflechten kann entweder im Fernsehgerät selbst oder in der das Signal anliefernden Set-Top-Box (DVD-Spieler, DVB-Empfänger etc.) erfolgen. Auf dem Computer wird das Deinterlacing entweder von einer Software (etwa DVD-Player-Software) oder auf Hardware-Ebene (z. B. TV-Karte) durchgeführt. Die Bildqualität hängt entscheidend vom verwendeten Deinterlacer ab.

Aus historisch-technischen Gründen verwenden alle 50- und 60-Hz-Röhren-Fernsehgeräte das Zeilensprungverfahren, bei dem keine Vollbilder (frames) sondern Halbbilder (fields) dargestellt werden. Jedes Halbbild besteht nur aus der Hälfte der Bildzeilen eines Vollbildes. Es wird immer abwechselnd ein Halbbild mit den ungeraden Bildzeilen (odd oder top field) und eines mit den geraden Bildzeilen (even oder bottom field) dargestellt. Ursprünglich wurde das Zeilensprungverfahren in der Anfangszeit des Fernsehens eingeführt, um mit dem damaligen Stand der Technik ein halbwegs flimmerfreies Bild zu gewährleisten. Heutzutage stellt dieses Verfahren jedoch ein echtes Problem dar, denn es ist für moderne Bildschirme (LCD, Plasma, DLP) ungeeignet und beeinträchtigt die Bildqualität. Bis heute werden aus Kompatiblitätsgründen aber bei praktisch allen Fernseh- und Videosignalen keine Vollbilder, sondern Halbbilder übertragen. Beim in Deutschland üblichen PAL-Standard sind es beispielsweise nicht 25 Vollbilder sondern 50 Halbbilder pro Sekunde. Ein solches Signal bezeichnet man als „interlaced“ (verwoben).

Bei Interlaced-Signalen muss zwischen zwei Arten von Quellen unterschieden werden: zum einen Film- und zum anderen Video-Aufnahmen. Bei der Produktion von Filmen werden Filmkameras eingesetzt, die Vollbilder aufzeichnen (i. d. R. mit 24 Hz). Diese Aufnahmen sind in erster Linie fürs Kino bestimmt, wo ebenfalls Vollbilder dargestellt werden. Für die TV-Übertragung müssen solche Filmaufnahmen nachträglich in Halbbilder zerlegt werden, um das notwendige Zeilensprungsignal zu erzeugen. Je zwei aufeinanderfolgende Halbbilder gehen hier auf ein und dasselbe Vollbild zurück bzw. haben den gleichen Zeitindex. Ein solches Signal wird auch als progressive with segmented frames (psF) bezeichnet. Ganz anders sieht das bei Videoaufnahmen aus, die mit TV-Kameras für das Fernsehen produziert wurden. TV-Kameras arbeiten nach dem Zeilensprungverfahren und zeichnen Halbbilder auf. Sie erzeugen also direkt ein Interlaced-Signal. Da zuerst das eine Halbbild und erst danach das andere Halbbild aufgezeichnet wird, haben hier zwei aufeinander folgende Halbbilder unterschiedliche Zeitindizes. Bei PAL ergibt sich zwischen zwei Halbbildern somit ein zeitlicher Verzug von 0,02 Sekunden. (Siehe auch: Bewegte Bilder).

Für Deinterlacing besteht ein wesentlicher Unterschied zwischen Kino- und TV-Material: TV-Material besteht aus 50 unterschiedlichen Einzelbildern pro Sekunde (PAL), bei einer kontinuierlichen Bewegung zeigt jedes dieser Halbbilder einen anderen „Schnappschuss“. Bei Kinomaterial, das im PAL-Format gezeigt wird (2:2-Pull-down) stammen je zwei aufeinanderfolgende Halbbilder aus demselben Vollbild. Dadurch kann man einerseits Kinomaterial theoretisch perfekt deinterlacen (Vollbilder lassen sich eindeutig herleiten), andererseits jedoch sind die Bewegungen weniger flüssig, da faktisch nur halb soviele „Schnappschüsse“ der Bewegung existieren. Kinomaterial erfordert also eine andere Art von Filterung, um nach dem Deinterlacing harmonisch zu wirken.

Heute werden eine ganze Reihe verschiedener Deinterlacing-Methoden eingesetzt. Diese unterscheiden sich zum Teil erheblich im betriebenen Aufwand. Teilweise kommen sogar Erkenntnisse aus der künstlichen Intelligenz zum Einsatz. Aber die perfekte Deinterlacing-Methode gibt es leider nicht. Alle Methoden haben ihre Vor- und Nachteile. Im Folgenden werden die wichtigsten Verfahren näher beschrieben.

Die einfachste Möglichkeit Bildmaterial mit Zeilensprung zu deinterlacen ist, die vorhandenen Halbbilder gleichzeitig anzuzeigen, d. h. sie übereinander zu legen. Die geraden Zeilen des einen Halbbildes und die ungeraden Zeilen des anderen Halbbildes ergeben wieder ein Vollbild. Dies funktioniert allerdings nur ohne Qualitätsverlust bei Filmmaterial, das aus Halbbildern vom gleichen Aufnahmezeitpunkt besteht. In diesem Fall muss während des Vorgangs nur dafür gesorgt werden, dass immer nur die passenden Halbbilder zusammengefügt werden. Falls die Halbbilder sich aber zeitlich unterscheiden (TV-Material), entstehen kammartige Artefakte, da die Inhalte nicht übereinstimmen. Die Zeilen des einen Halbbildes erscheinen dabei gegenüber den Zeilen des anderen Halbbildes verschoben. Die Veränderung zwischen den einzelnen Halbbildern und damit die Kammeffekte sind umso stärker, je mehr Bewegung in der Szene vorliegt. Am Ende des Verfahrens hat man aus je zwei Halbbildern ein Vollbild erstellt. Falls man dieses nun anzeigen würde, sähe man ein deutliches Flimmern. Es käme dann nämlich nur zu einer Bildwiederholungsrate von 25 Hz. Die Vollbilder werden deswegen jeweils zweimal angezeigt, um wieder eine Rate von 50 Hz zu erreichen. Weave ist also ein sehr einfaches Verfahren und hat den entscheidenden Nachteil der Kammartefakte. Somit ist Weave für TV-Aufnahmen ungeeignet und man benötigt andere Deinterlacingverfahren. Viele Deinterlacer benutzen jedoch Eingabesignale, bei denen die Felder bereits mittels Weave zusammengefügt wurden, und verarbeiten diese weiter.

Kurz: Halbbilder zu Vollbild zusammenfügen. Ungeeignet für TV-Material!

Bei der Verwendung von Unschärfe wird das Vollbild dabei mit einem Verfahren ähnlich der Weave-Technik erstellt. Die beiden Halbbilder werden ebenfalls zusammengefügt, das entstandene Vollbild wird aber vor der Anzeige noch einmal weich gezeichnet. Damit versucht man den Kammeffekt abzuschwächen, dies führt allerdings auch zu einem deutlich unscharfen Ausgangsmaterial.

Kurz: Halbbilder zusammenfügen und Ergebnis weichzeichnen.

Man kann nun erkennen, dass es vor allem wichtig ist, Kammartefakte zu eliminieren. Deswegen versucht man das Vollbild aus nur einem Halbbild zu erstellen. Das andere Halbbild wird einfach fallengelassen. Dadurch verliert man allerdings die volle Auflösung des Originals und besitzt dann nur noch ein halb so großes Bild. Aus diesem Grund muss man danach das Bild wieder auf die alte Größe anpassen.

Falls man auf das nachträgliche Vergrößern des Bildes verzichten möchte, kann Skip Field das Vollbild auch durch einfache Zeilenverdopplung errechnen. Bei dieser Wahl erhält man aber ein qualitativ schlechtes Ergebnis. Deswegen gewinnt man die fehlenden Zeilen mittels Interpolation. Die einfachste Möglichkeit ist es dabei, eine fehlende Zeile aus den beiden umliegenden Zeilen zu ermitteln. Zieht man mehr Zeilen bei der Interpolation mit hinzu, wird das Ergebnis besser, allerdings steigt damit auch der Rechenaufwand. Am Ende wird das erzielte Bild wieder doppelt angezeigt, um ein Flimmern zu verhindern. Das große Problem bei der „Skip Field“-Technik ist, dass Bewegungen deutlich abgehackt wirken, da ein Halbbild einfach weggelassen wird und es damit schließlich an Bildinformation fehlt. Außerdem fehlen horizontale Details, welche so klein sind, dass diese nur jeweils in einem Halbbild auftreten. Die Methode hat aber den Vorteil, dass keine Kammeffekte auftauchen. Das Endergebnis wirkt insgesamt weicher als das Original, weil man das Bild wieder hochrechnen muss bzw. weil die fehlenden Zeilen selbst bei guter Interpolation niemals dem Ursprungsmaterial entsprechen.

Kurz: Gerade oder ungerade Zeilen weglassen, dann daraus Vollbild gewinnen.

Beim Bobbing wird jedes Halbbild zu einem Vollbild erweitert. Es wird aber kein Halbbild ausgelassen, wie es beim Skip Field Video der Fall ist. Man ermittelt also die fehlenden Zeilen des Odd- und des Even-Fields und erhält dadurch zwei Vollbilder. Nun zeigt man zuerst das erste, dann das zweite Vollbild an. Die erste und die letzte Zeile der Halbbilder lassen sich allerdings schlecht interpolieren, da unterhalb bzw. oberhalb keine Nachbarszeile vorhanden ist, aus der man Informationen zur Rekonstruktion ziehen könnte. Falls diese Zeilen dann nicht berechnet werden, kommt es beim Wechsel zwischen den Vollbildern zu einem Auf (erste Zeile fehlt) und Ab (letzte Zeile fehlt) in der Wiedergabe. Genauso wie beim Skip Field Video wirkt bei diesem Verfahren das Ergebnis weich gezeichnet und es können auch horizontale Details fehlen. Kammartefakte tauchen ebenfalls nicht auf. Als Verbesserung bietet die Methode flüssige Bewegungen, da kein Halbbild weggelassen wird. Zusätzlich bleibt die Bildwiederholrate bei 50 Hz, es werden nämlich aus 50 Halbbildern 50 Vollbilder pro Sekunde. Der namensgebende Nachteil des Bobbings ist das vertikale Wackeln.

Kurz: Die fehlenden Zeilen von Halbbild 1 interpolieren, das Gleiche für Halbbild 2 machen. Die beiden gewonnenen Vollbilder nacheinander abspielen.

Blending bzw. Averaging arbeitet ähnlich wie Bobbing. Die Vollbilder werden durch Erweiterung von Halbbildern gewonnen. Dies geschieht durch einfache Zeilenverdopplung bzw. durch Interpolation. Der Unterschied besteht darin, dass beim Blending nicht alle erzeugten Vollbilder einzeln nacheinander dargestellt werden. Sind beide Vollbilder erstellt, werden sie übereinander gelegt und ihr Mittelwert errechnet, so dass ein besseres Ergebnis erzielt wird als bei der einfachen, nur räumlichen Interpolation, da auch die zeitliche Dimension mit einbezogen wird (3D-Interpolation aufgrund der Verwendung der zwei räumlichen Dimensionen x und y, sowie zusätzlich der zeitlichen Dimension z, wobei die Dauer der jeweilig herangezogenen Zeiteinheit fix bei 2 × 50stel = einer 25stel Sekunde liegt). Bei dieser Methode ist es auch in abgewandelter Form möglich, diese nur auf bestimmte Bereiche (z. B. dort wo Kammartefakte besonders stark auftreten) anzuwenden. Das endgültige Bild wird zur Flimmervermeidung wieder zweifach wiedergegeben. Der Vorteil des Blendings ist, dass kein Zittern auftritt, welches für Bobbing typisch ist. Durch die Vermengung der beiden Bilder verwischen allerdings bewegte Strukturen.

Dies entspricht jedoch der Bewegungsunschärfe bei längerer Belichtungszeit, sprich bei den progressiven Bildgeschwindigkeiten 24p und 25p mit entsprechend niedriger, bei 50i nicht erreichbarer Verschlussgeschwindigkeit (s. Umlaufblende). Deshalb wird Blending gern als schnelle, einfache Methode eingesetzt, um hektische, unschöne Videobewegungen (der gefürchtete sog. Shuttereffekt) zumindest beim Abspielen ausgeglichen und ästhetisch wie auf Film aussehen zu lassen. Im Standbild ist das Ergebnis allerdings nicht vollständig identisch zu einer natürlich erzeugten niedrigeren Belichtungszeit, da das Resultat besonders bei schnellen Bewegungen ein Doppelbild (also nicht ganz identisch zu natürlicher Bewegungsunschärfe) ist, das beim Abspielen mit 25 B/s dem menschlichen Auge aber nicht auffällt.

Diese Methode ist nur geeignet, um ursprüngliches 50i-Videomaterial zu deinterlacen. Abgetastetes Filmmaterial dagegen, das mit 24 Vollbildern aufgenommen, aber amateurhaft ohne Weaving (s. o.), also mit 50 Halbbildern mit (auf dem Computer) sichtbaren Halbbildzeilen abgetastet wurde, verliert dadurch ebenfalls die Hälfte seiner (effektiven) Bilder pro Sekunde und weist somit, da aufgrund der Aufnahmemethode nie mehr Informationen als 25 B/s vorhanden waren, am Ende nur noch 12,5 (effektive) Bilder pro Sekunde auf. Dieses genügt nicht, um eine Bewegungsillusion aufrechtzuerhalten, wobei hier auch die hinzugerechnete zusätzliche Bewegungsunschärfe übernatürlich stark auffällt. Bei abgetastetem Filmmaterial, das Halbbildzeilen aufweist, ist daher die allein räumliche Interpolation mit Skip field zu bevorzugen.

Kurz: Die fehlenden Zeilen von Halbbild 1 interpolieren, das Gleiche für Halbbild 2 machen. Die beiden gewonnenen Vollbilder übereinander legen und den Mittelwert ermitteln. Das Ergebnis: Aus 50 Halbbildern werden 25 Vollbilder.

Adaptives Deinterlacing ist die am weitesten entwickelte und aufwendigste Methode. Der Unterschied zu den zuvor beschriebenen Deinterlacing-Methoden besteht darin, dass bei diesem Verfahren für die Verarbeitung eines bestimmten Halbbildes auch die vorangegangenen und die nachfolgenden Halbbilder mit einbezogen werden. Zuallererst wird dabei eine detaillierte Bewegungsanalyse durchgeführt. Teile des Halbbildes, bei denen keine oder nur vernachlässigbare Bewegungen festgestellt wurden, können anschließend mit einem einfachen Weaving ergänzt werden, ohne dass dabei Kammartefakte zu befürchten sind. Dadurch können die Nachteile des Bobbings (Zittern) oder des Blendings (Unschärfe) vermieden werden. Für bewegte Bildteile dagegen muss eine andere Methode gewählt werden. Der Deinterlacer wird hier versuchen bewegte Bildelemente zu erkennen und diese aus anderen Halbbildern möglichst verlustfrei zu rekonstruieren. Je mehr vorangegangene bzw. nachfolgende Halbbilder bei diesem Vorgang mit einbezogen werden, desto besser ist das zu erwartende Ergebnis. Natürlich steigt damit auch der Rechenaufwand an. Außerdem verzögert sich mit jedem nachfolgenden Halbbild, das bei der Verarbeitung des aktuellen berücksichtigt wird, die Bildausgabe um 0,02 Sekunden (bei PAL), denn schließlich müssen diese Bilder ja erst einmal „abgewartet“ werden. Wird der Ton nicht ebenfalls entsprechend verzögert, laufen Bild und Ton unsynchron, was aber im üblichen Rahmen nicht weiter auffällt. Ausschließlich bewegte Bildelemente, die nicht rekonstruiert werden konnten, muss der Deinterlacer interpolieren. Hierfür können wiederum unterschiedliche Methoden zum Einsatz kommen.

Zusammenfassend lässt sich sagen, dass adaptives Deinterlacing im Idealfall das beste Ergebnis liefert: Man erhält Vollbilder in sehr guter Bildqualität und das bei voller Bildwiederholrate. Allerdings hat auch das adaptive Deinterlacing eine ganze Reihe von Nachteilen. Wie bereits angesprochen, ist das Verfahren sehr rechenintensiv. Software-Deinterlacer benötigen daher ein sehr schnelles System, um ordnungsgemäß arbeiten zu können. Entsprechende Hardware-Deinterlacer sind teuer. Ob der Mehrpreis den Qualitätsgewinn rechtfertigt, bleibt fraglich. Darüber hinaus ist es sehr schwierig einen zuverlässigen adaptiven Deinterlacer zu entwickeln, da die notwendigen Algorithmen komplex sind. Mittelmäßige oder gar fehlerhafte adaptive Deinterlacer rechnen oft so viele störende Artefakte in das Bild hinein, dass man eine mangelhafte Bildqualität erhält. Schließlich hängt die Qualität, die ein adaptiver Deinterlacer liefert, entscheidend von der Qualität des Ausgangsmaterials ab. Ein gutes Ergebnis lässt sich nur mit hochwertigen Bildsignalen erreichen. Bildstörungen, wie etwa „Rauschen“ oder „Grieseln“, können auch hochwertige Deinterlacer schnell aus der Bahn werfen. Die Folge sind wieder starke Bildartefakte, die die Bildqualität beeinträchtigen. In diesem Fall fährt man mit einem einfachen Bobbing oder Blending oft besser.

Die modernsten Deinterlacing-Verfahren verwenden Motion Compensation (Bewegungskompensation). Dabei werden die Halbbilder mit Weave kombiniert. Da es bei Bewegungen mit Weave zu Kammstrukturen kommen würde, werden die bewegten Bildelemente erst einmal identifiziert. Danach wird versucht die Teile von Halbbild 1 mit den Entsprechungen aus Halbbild 2 zur Deckung zu bringen und erst dann mit Weave zu kombinieren. Das Verfahren ist zwar sehr aufwendig, aber mittlerweile für Fernseher Stand der Technik geworden. Üblicherweise wird dieses Verfahren mit adaptiven Filtern kombiniert, so dass ein sehr guter Gesamteindruck entsteht. Methoden, welche mit Motion Compensation arbeiten, liefern das beste Ergebnis von allen Varianten. Lediglich billige, auf PC-Monitor-Technik basierende LCD-Fernseher verwenden noch unkompensiertes Deinterlacing.

Kurz: Halbbilder mit Weave verbinden, bewegte Bildteile zu Deckung bringen und dann mit Weave kombinieren.

Die hier beschriebenen Arten des Deinterlacings gelten in erster Linie für natives 50i-PAL-Videomaterial und per PAL Speed-Up (s. Filmabtaster) während der Abtastung auf 25p bzw. 25i beschleunigtes 24p-Filmmaterial. Bei NTSC-Material und analogem Filmmaterial mit anderen Filmgeschwindigkeiten als 24 B/s liegen die Sachen etwas komplizierter.

Möchte man natives NTSC-Videomaterial mittels Blending in Vollbilder umwandeln, ergeben sich die geringsten Schwierigkeiten, da hier ohne Probleme genauso wie bei PAL vorgegangen werden kann.

Eine einfache Methode zur Abtastung von Filmmaterial mit 24 B/s auf NTSC, wie sie der PAL Speed-Up bietet, gibt es nicht; eine entsprechende Beschleunigung auf 29,97 B/s wäre einfach zu auffällig. Stattdessen muss das Material einen komplizierten Interlacingprozess durchlaufen, den sog. Pull-down (s. Filmabtaster), da sich 24 auch schlecht durch 29,97 teilen lässt, etwa indem verschiedene Einzelbilder wiederholt würden. Verbleibt das Material im NTSC-Format, muss es interlacet bleiben, da sonst die Flüssigkeit der Bewegungen auch bei Weaving verlorenginge.

Man kann solches Material allerdings per inversem Telecining (zuweilen auch als Pull-up bezeichnet) in PAL 25p verwandeln. Nach dem inversen Telecining (für den Heimanwender etwa durch das Freewaretool VirtualDub über dessen Framerate-Option möglich) erhält man zuerst eine Datei mit progressivem Material, das eine Bildgeschwindigkeit von 23,976 B/s aufweist; dieses unterwirft man einfach dem gewohnten PAL Speed-Up, indem Bild und Ton auf 25 B/s beschleunigt werden, wobei auch Auflösung und Pixelseitenverhältnis angepasst werden, indem das Bild dem PAL-Seitenverhältnis entsprechend etwas vergrößert wird.

Auch hier ist die Methode des inversen Telecinings anzuwenden.

Zuweilen, vor allem bei historischem Filmmaterial und Amateurfilmen, stößt man auf andere Filmgeschwindigkeiten als 24 B/s. Stummfilme vor der Erfindung des Tonfilms wurden oft mit einer zwar genormten, aber geringeren Geschwindigkeit aufgenommen (Federwerke oft mit 12–16 B/s); Normal 8 und Super8 liefen bzw. laufen auch in der Tonvariante zumeist mit 16 B/s (Normal8) bzw. 18 B/s (Super8).

Derartige Bildgeschwindigkeiten sind wie beim Pull-down für NTSC weder durch 24, noch durch 25, 29,97 oder 50 teilbar. Bis heute ist oft sowohl bei NTSC wie PAL zu sehen, wie solche Filme häufig mit den gewohnten 24 bis 25 B/s abgetastet werden, was der Grund ist, weshalb die Bewegungen auf solchem Material heute oft abgehackt und zu schnell wirken. Allerdings ist es möglich, auch bei diesem Material einen Pull-down mit Einführung eines Interlacings vorzunehmen, so dass die ursprüngliche Geschwindigkeit sowohl bei PAL als auch bei NTSC erhalten bleibt. Bei der professionellen Abtastung von Normal8 und Super8 für Privatkunden ist dies bereits Standard, jedoch wird dies häufig noch nicht bei historischem Filmmaterial auf 16 mm und 35 mm vorgenommen, wie noch heute sehr häufig in Geschichtsdokumentationen zu sehen.

Der Einwand, effektive Bildgeschwindigkeiten unterhalb von 24 B/s seien dem Betrachter nicht zuzumuten, greift nicht; erstens kann dies für 16–18 B/s bei Normal8 und Super8 jeder bestätigen, der bereits eine solche flimmerfrei wirkende Projektion gesehen hat (Flimmern in Form von Hell-Dunkel-Schwankungen wird allenfalls durch einfaches Abfilmen mit einer Videokamera von der Leinwand erzeugt). Zweitens treten auch unterhalb von 16 B/s keine Probleme für den modernen Betrachter auf, da die Dunkelheit zwischen den Fernsehbildern sich nicht verlängert, und wie bei einem Großteil moderner Zeichentrick- und Animationsfilme unschwer zu erkennen ist, die mit deutlich weniger als 20 B/s auskommen. Die BBC hat daher ein solches Pull-down-Verfahren für ihre anlässlich des Jahrtausendwechsels erschienenen Mammutdokumentation People’s Century angewandt, wodurch viel historisches Filmmaterial erstmals in seiner ursprünglichen, natürlichen Geschwindigkeit zu sehen war.

Hier ergibt sich allerdings auch für PAL dasselbe Dilemma wie generell für Filmmaterial auf NTSC; durch einfaches Deinterlacing, egal ob durch Weaving oder Blending, gehen Einzelbilder verloren und das Material wird stark ruckelig (Weaving), oder Bewegungen verschmieren mehr als ohnehin bei der längeren Verschlussgeschwindigkeit von Film (Blending). Man kann zwar ein inverses Telecining vornehmen und erhält dadurch die originale Abtastgeschwindigkeit als Bildgeschwindigkeit (jedes Filmbild gleich ein progressives Videobild), derart rückgewandeltes Material lässt sich allerdings nicht mit Material zusammenschneiden, das mit 24p, 25p, 25i oder den NTSC-Geschwindigkeiten läuft.

Es liegt hier also der einzige Fall vor, wo grundsätzlich kein Deinterlacing vorgenommen werden sollte.

Zum Seitenanfang



Kolin (Unternehmen)

Kolin logo.svg

Kolin (chin. 歌林公司, Gēlín gōngzi, notiert an der Börse Taiwan unter Nr. 1606) ist ein großes Unternehmen der Elektro- und Konsumgüterindustrie in der Republik China auf Taiwan. Nach der Gründung im Jahr 1963 wurden Schwarz-Weiß-Fernsehgeräte produziert, in den 1970er Jahren begann die Fertigung von Kühlschränken, Waschmaschinen und Klimaanlagen. Der Plattenverlag Kolin Records gab Schallplatten mit taiwanischer Musik heraus. 1981 wurde mit Mitsubishi Electric das Gemeinschaftsunternehmen Ling-Lin Electric gegründet; Produkte waren unter anderem Autotelefone. Die in Taiwan äußerst beliebten Karaoke-Systeme verschafften Kolin weitere Bekanntheit. In den 1990er Jahren kamen Beteiligungen im Bausektor und in der Halbleiterindustrie hinzu. 1997 investierte Kolin in den taiwanischen LCD-Panelhersteller Hannstar und sicherte sich so den Zugang zum zukunftsträchtigen Flachbildschirm-Markt.

Produkte sind heute Haushaltsgeräte wie Küchenmaschinen, Klimaanlagen und Flachbildfernseher, die meist in der Volksrepublik China und oft in Auftragsfertigung (OEM oder ODM) hergestellt werden, aber auch CDs, Leiterplatten und Halbleiterbauelemente. Die Marke Olevia, unter der Syntax-Brillian Kolins LCD-Fernseher vertreibt, ist in Nordamerika bereits gut eingeführt. In jüngster Zeit tritt Kolin auch unter eigener Marke als Hersteller von LCD-Fernsehern auf (Produktionsvolumen 2005: 300.000 Stück) und will weltweit bekannter werden. Der Umsatz betrug im Jahr 2005 11.268 Mio. TWD, ca. 289,6 Mio. EUR.

Kolin ist Mitglied in der taiwanischen Kleingeräte-Allianz des angesehenen Industrial Technology Research Institute (ITRI), um dessen Erkenntnisse über die Weiterentwicklung von Hausgeräten schnell in marktreife Produkte überführen zu können.

Zum Seitenanfang



Aiwa

Aiwa war eine japanische Firma, die sich auf Multimediageräte spezialisiert hatte. Aiwa wurde 1951 gegründet und stellte anfangs nur Mikrofone her. Das Unternehmen erreichte Bekanntheit durch Pionierarbeit auf dem Gebiet HiFi-tauglicher Kassettenrekorder und produzierte Japans erstes digitales Tonbandgerät.

Diese hohe Innovationsfähigkeit konnte die Firma jedoch nicht halten, und sie ging in den 1990er Jahren fast konkurs, obwohl damals fast das gesamte japanische Management bis hinunter zu den Landesgesellschaften durch Sony-Manager ersetzt wurde.

Zum 1. Oktober 2002 wurde Aiwa dann zu 100 Prozent von Sony übernommen. Zu diesem Zeitpunkt hatte Aiwa bereits die ersten LCD-Fernseher für den Fachhandel angekündigt. Dieses Angebot wurde sofort zurückgezogen, und erst Jahre später bot Sony unter dem eigenen Markennamen Flachbildfernseher an.

Aiwa-eigene Werke, darunter eine hochmoderne Produktionsanlage in Wales, wurden verkauft und mit dem Erlös und einer für Aiwa in Japan anstehenden Steuer-Verlustzuweisung die Firmenübernahme finanziert. Dabei blieb unter dem Strich für das Fiskaljahr 2002/2003 für Sony ein kleiner Überschuss übrig, der deren Bilanz etwas verbesserte.

Nach der Übernahme verkaufte Aiwa als ein erweiterter Vertriebskanal für Sony vor allem Geräte aus dem Audio-Bereich, wie Hi-Fi-Anlagen, Discmans und MP3-Player bis hin zu Fernbedienungen.

Aufgrund des fehlenden Markterfolges ließ Sony die Marke Aiwa ohne weitere Erklärungen einschlafen; jedenfalls sind seit dem Geschäftsjahr 2003/2004 keine Produkte neu angekündigt worden. Eine offizielle Ankündigung steht bis heute (Stand Mai 2008) noch aus, die weltweite Präsenz der Marke Aiwa verwaist dementsprechend zunehmend.

Zum Seitenanfang



Aktiv-Matrix-Display

Aktiv-Matrix-Displays gehören zu den Flüssigkristallbildschirmen und bestehen aus einer Matrix von Bildpunkten, basierend auf TN-LCD-Technologie (TN = Twisted Nematic). Jeder einzelne Bildpunkt besitzt einen aktiven Verstärker und Stromversorgungsanschlüsse.

Beide Effekte (beliebig geringe Steuerspannung und Ausgleich parasitärer Kapazitäten) führen dazu, dass Aktiv-Matrix-Displays dem steten Wunsch nach kleineren Pixeln (PDAs, Mobiltelefone mit Farbdisplay) oder höheren Pixelzahlen (Notebook, Digitalkamera-Display, LCD-Fernseher) als einzige LCD-Form gerecht werden können.

Durch die Verwendung von TN-Zellen wird auch die Weitwinkligkeit der Anzeige gegenüber Passiv-Matrix-Displays verbessert.

Wichtigster Vertreter von Aktiv-Matrix-Displays sind Displays mit Dünnschichttransistoren (englisch Thin Film Transistor, TFT) bei denen der Transistor direkt auf das Glassubstrat aufgedampft ist. OLED-Displays werden ebenfalls als Aktiv-Matrix-Displays realisiert. Solange keine Hochfrequenztransistoren aus Kunststoff möglich sind, erfordert ein OLED dieselbe Verstärkerstruktur auf Glas- oder Siliziumbasis wie ein herkömmliches LCD.

Zum Seitenanfang



Disturbia

Disturbia ist der Titel eines US-amerikanischen Thrillers von D.J. Caruso, in dem der Hauptdarsteller Shia LaBeouf, in seinem Haus unter Arrest stehend, seine Nachbarn ausspioniert und dabei einem Mörder auf der Spur ist. Der Film ist von Alfred Hitchcocks Klassiker Das Fenster zum Hof (1954) inspiriert, es handelt sich dabei aber nicht um ein Remake. Der Film wurde 2007 von der DreamWorks Pictures gedreht.

Am 4. April 2007 fand die Premiere des Films in Hollywood statt; in Deutschland kam der Film erst am 20. September 2007 in die Kinos.

Der Film zeigt zu Beginn, wie Kale mit seinem Vater angelt. Bei der Rückkehr von dem Ausflug wird das Auto der beiden von einem Raser überholt, welcher dann kurz vor einem liegen gebliebenem Fahrzeug ausschert. Der fahrende Kale kann nicht mehr rechtzeitig ausweichen, verreißt das Lenkrad und das Auto überschlägt sich. Als ein weiteres Fahrzeug in das Auto der beiden kracht, kommt Kales Vater ums Leben. Fortan gibt sich Kale die Schuld am Tod seines Vaters, wird deshalb in der Schule zunehmend schlechter und schlägt schlussendlich seinen Spanischlehrer, da dieser ihn durch eine Anspielung auf seinen Vater beleidigte.

Dafür wird Kale mit drei Monaten Hausarrest während der Sommerferien bestraft und erhält eine Fußfessel, die ihm einen Aktionsradius von zirka 30 Metern lässt. Zunächst versucht er sich die Zeit mit Videospielen und Musik zu vertreiben. Als ihm seine Mutter dann jedoch das Spielekonsolen- und Musik-Download-Konto kündigt, ist es auch damit vorbei.

Als dann nebenan die attraktive Ashley einzieht, beginnt Kale zunehmend, seine Nachbarn auszuspionieren. Unterstützung erhält er dabei von seinem Freund Ronnie.

Ashley bemerkt die beobachtenden Blicke und stellt die beiden zur Rede. Entgegen allen Erwartungen freunden sich die beiden mit ihr an und Kale kommt Ashley auch körperlich näher. Als Kale dann in den Nachrichten von einem Serienmörder hört, der sich in der Gegend herumtreibt und einen 1960er Ford Mustang fahren soll, zieht er die Parallele zu seinem Nachbarn Robert Turner.

Nach mysteriösen Sichtungen und diversen nächtlichen Videoaufnahmen sind sich die drei Jugendlichen sicher, dass Turner der Täter sein muss. Nachdem Ronnie das Auto von Turner geknackt hat, um die Funkfrequenz für das Tor seiner Garage zu bekommen, in welcher sie eine Leiche vermuten, vergisst er sein Handy in dessen Auto. Am Tage darauf versucht er es wieder zu bekommen, wird von Turner erwischt und bleibt für Stunden verschwunden. Kale verlässt den erlaubten Bereich seiner Fußfessel und ruft dadurch die Polizei. Nachdem Turners Haus flüchtig durchsucht wurde, konnte nichts Auffälliges festgestellt werden. In dem Sack, in denen die drei Jugendlichen eine Leiche vermutet hatten, befindet sich "nur" ein totes Reh, das Turner laut eigener Angabe angefahren habe. Er sei noch nicht dazugekommen es zu begraben.

Stunden später sitzt Kale in seinem Zimmer, als sich plötzlich das Bild von Ronnies kabelloser Kamera aktiviert. Kale denkt bereits, dass Ronnie tot ist, was sich jedoch als schlechter Scherz entpuppt, weil der in seinem Schrank lag, um sich vor der Polizei zu verstecken.

Als Kales Mutter sich bei Turner entschuldigen will, um ihn davon abzuhalten, Anzeige gegen ihren vorbestraften Sohn zu erheben, beginnt jedoch der wahre Albtraum. Turner fesselt Kales Mutter und taucht dann in Kales Haus auf, wo er Ronnie niederschlägt, und als er Kale bereits gefesselt hat, will er auch noch die überraschend auftauchende Ashley niederstechen. Durch geschicktes Zusammenspiel kann Turner vorübergehend ausgeschaltet werden, so dass Kale seine Mutter in dessen Haus suchen kann.

Dabei findet Kale einen Präparationsraum und eine Art Verlies, in dem alle Leichen des Serienkillers liegen. Kale findet seine Mutter und tötet später Turner, als dieser ihn und seine Mutter umbringen will.

In der Schlusssequenz sieht man Kale und Ashley, wie sie von Ronnie auf dem Sofa küssend gefilmt werden, während dieser den Film mit dem Schlusssatz „Schon bald das beliebteste Video auf YouTube“ abschließt.

Disturbia wurde in den Städten Whittier und Pasadena, beide in Kalifornien, gefilmt. Die Dreharbeiten fanden vom 6. Januar bis 28. April 2006 statt. Die Häuser von Kale und Mr. Turner, die im Film einander gegenüber zu sehen sind, stehen in zwei verschiedenen Städten.

Da der Film mit seinen jungen Darstellern eine vorwiegend jugendliche Zielgruppe ansprechen soll, wurden entsprechend viele sogenannte Product Placements vorgenommen. Im Film zu sehen sind neben einem Mobiltelefon von Nokia die Apple-Produkte MacBook Pro, Mac Pro, Cinema Display, iPod (60 GB) sowie der iTunes Store. Auch die Embleme der Getränke Coca-Cola und Red Bull treten deutlich in Erscheinung. Ferner wird ein LCD-Fernseher von Philips, sowie ein HD Camcorder von Panasonic benutzt und an den Konsolen PlayStation Portable und auf einer Xbox 360 über Xbox Live das Spiel Ghost Recon – Advanced Warfighter auf einem AK Rocker 200 Gamerchair gespielt. Des Weiteren sind Sportschuhe der Firma asics in Nahaufnahme zu sehen. Auch wird das große Poster der Skateboardfirma ZERO, welches an der Decke hängt, deutlich präsentiert.

Steven Spielberg war von der darstellerischen Leistung Shia LaBeoufs derart begeistert, dass er ihm in seiner Eigenschaft als Filmproduzent die Hauptrolle in Michael Bays Transformers (2007) verschaffte und ihn außerdem für seinen vierten Indiana-Jones-Film (Indiana Jones und das Königreich des Kristallschädels) unter Vertrag nahm, der am 22. Mai 2008 in die internationalen Kinos kam.

James Berardinelli bezeichnet Disturbia als „netten kleinen Kriminalthriller“. Die Darsteller haben laut seiner Filmkritik nicht die gleiche Leinwandpräsenz wie James Stewart, Grace Kelly und Raymond Burr, die Darsteller vom Fenster zum Hof. Die Kritiker von filmstarts.de bemerken, dass der Film einen „kruden Genre-Mix“ darstelle – mal Komödie, mal Romanze sei – und den Zuschauer durch geschickt eingesetzte Stilmittel bewusst in unterschiedlicher Weise beeinflusse. Mit seinem „verspielten Stil“ mache er „jede Menge Spaß“.

Der Film spielte bei einem Budget von 20 Mio. Dollar bereits am ersten Wochenende 22 Mio. Dollar ein und führte zwei Wochen lang die Kinocharts der Vereinigten Staaten an. Weltweit wurden über 117 Mio. US-Dollar mit dem Film eingenommen.

Zum Seitenanfang



Source : Wikipedia